N71-31 176
NASA CR119361

KINEMATICS OF RIGID BODIES
IN SPACEFLIGHT

by

T. R. Kane and P. W. Likins

Technical Report No. 204

May 1971

Department of Applied Mechanics
Stanford University



KINEMATICS OF RIGID BODIES

IN SPACEFLIGHT

by

T. R. Kane and P. W. Likins

Technical Report No. 204

May 1971

Department of Applied Mechanics

STANFORD UNIVERSITY



This work was supported financially by the National Aeronautics
and Space Administration under NGR-05-020-209.

Reproduction in whole or in part is permitted for any purpose of

the United States Government.

© 1971 by Thomas R. Kane and Peter W, Likins
All rights reserved

Printed in the United States of America



PREFACE

The solution of problems of dynamics involving motions of rigid
bodies in spaceflight necessitates extensive use of various kinematical .
ideas, some of which have played such a small role in the development
of technology prior to the advent of spaceflight that they have nearly
disappeared from the modern literature. It is the purpose of this
report to present a unified, modern treatment of the kinematical ideas
that the authors believe to be most useful in dealing with problems

of rigid bodies in spaceflight.
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1.1

1.1 Simple rotation

A motion of a rigid body or reference frame B relative to a rigid

body or reference frame A is called a simple rotation of B in A if

there exists a line L , called an axis of rotation, whose orientation

relative to both A and B remains unaltered throughout the motion.
This sort of motion is important because, as will be shown in Sec. 1.3,
every change in the relative orientation of A and B can be produced
by means of a simple rotation of B in A .

If a is any vector fixed in A (see Fig. 1.1.1), and b is a
vector fixed in B and equal to a prior to the motionof B in A,
then, when B has performed a simple rotation in A, b can be ex-
pressed in terms of the vector a , a unit vector A parallel to L,
and the radian measure 6 of the angle between two lines, LA and
LB » Which are fixed in A and B , respectively, are perpendicular
to L , and are parallel to each other initially. Specifically, if
6 1is regarded as positive when the angle between L, and L_ is gen-

A B

erated by a A-rotation of L, relative to L that is, by a

B A’
rotation during which a right-handed screw fixed in B with its axis

parallel to A advances in the direction of A when B rotates
relative to A , then
b=acos 6 -ax)sinb+a-* AA(1l - cos 6) (1

Equivalently, if a dyadic C is defined as

g_éy_cosG—EX_)Lsine+M(l-cosS) (2)
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Figure 1.1.1
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1.1

where U is the unit (or identity) dyadic, then

|o*

I
o
o

(3)

Derivations: Let o, and o, be unit vectors fixed in A , with

% parallel to L, and o, = A xaq s and let N

vectors fixed in B , with B, parallel to Ly and B8, = Ax By, as

and 8,y be unit

shown in Fig. 1.1.1. Then,if a and b are resolved into components

parallel to o, , o, A and B, B, A, respectively, corre-

sponding coefficients are equal to each other because o; =8; , 2 = By »

and a=Db when 6 =0 . In other words, a2 and b can be expressed as
a=7py; +tqo, + 1) (a)
and
b =pB, +q8, + 1) (b)

where p, q, and T are constants.
Expressed in terms of o, and g, the unit vectors §; and B,

are given by

= cos 0o,

; + sin 6o, (c)

and
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82 = =gin 691 + cos ng (d)
so that, substituting into Eq. (b), one finds that
b= (pcosd-q sin e)gl + (p sin 6 + q cos e)g_2 + A (e)

The right-hand member of Eq. (e) is precisely what one obtains by carry-
ing out the operations indicated in the right-hand member of Eq. (1),
using Eq. (a), and making use of the relationships A x 2 =2, and
A X 9y == 08 . Thus the validity of Eq. (1) is established; and Eq. (3)
follows directly from Egs. (1) and (2).

Example: A rectangular block B having the dimensions shown in
Fig. 1.1.2 forms a portion of an antenna structure mounted in a space-
craft A . This block is subjected to a simple rotation in A about
a diagonal of one face of B , the sense and amount of the rotation
being those indicated in the sketch. The angle ¢ between the line OP
in its initial and final positions is to be determined.

1f 31 s .§2 s and 33 are unit vectors fixed in A and parallel

to the edges of B prior to B's rotation, then a unit vector A

directed as shown in the sketch can be expressed as

- 32, + 433
- 5
And, if a denotes the position vector of P relative to O prior to

B's rotation, then



B P
\'/ -
Lo
., 4 2/ ltem
7 30°
/
A
33 / 2cm
3em 0
2
2
Figure 1.1.2
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-12a.

1 ¥ 8a, - 6a

3

It
X
|>
|

w

and

48a, + 64a
a - A= =2 =3

- 25

Consequently, if b 1is the position vector of P relative to O sub-

*
sequent to B's rotation,

12a, - 8§2 + 6a

b = (-2a, + 4a,) cos (n/6) + ——— =3 sin (n/6)
1)
4832 + 6433
+ o [1 - cos (n/6)]
= —0.53221 - 0.543a, + 4.4OZ§3
Since ¢ is the angle between a and b ,

a-+*hb

€08 ¢ = TalTel

where Lgl and |b| denote the (equal) magnitudes of a and b . Hence

(=2) (=0.532) + 4(4.407) _
(4 + 16)% (4 + 16)%

cos ¢ = 0.935

Numbers beneath signs of equality are intended to direct attention
to corresponding equations.
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and

¢ = 20.77 deg.
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1.2 Direction cosines

1f 8 > 2, 24 and 21 > by

orthogonal unit vectors, and nine quantities Cij (i,j = 1,2,3), called

b, , 23 are two dextral sets of

direction cosines, are defined as

C.. éa.' b, (i’j = 1,2’3) (1)

then the two row matrices [gl a, a;] and [hl b, 93] are related to each

%*
other as follows:

where C 1is a square matrix defined as

€11 12 C13]
c & |G Cy Cog (3)
191 %2 C33}

If a superscript T 4is used to denote transposition, that is,

CT is defined as
r
1611 Ca1 Cay
i
¢k £ 1% G O3 (%)
| €13 C23 O3

* The term “matrix" is here used in an extended sense.
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then Eq. (2) can be replaced with the equivalent relationship

[2‘.1 f’.z 33] = [P‘l _12.2 P_3:] C’Il (5)

The matrix € , called a direction cosine matrix , can be employ-

ed'to describe the relative oriengation of two reference frames or
rigid bodies A and B . 1In that context, it can be advantageous to
replace the symbol C with the more elaborate symbole ACB . In view
of Eqs. (2) and (5), one must then regard the interchanging of super-

scripts as signifying transposition; that is,
BA & ABT
¢ = (Cc) (6)

The direction cosine matrix C plays a role in a number of useful

B

relationships. For example, if V 1is any vector and A and v,

(i =1,2,3) are defined as

vi = V. ﬂi (1 =1,2,3) (7N
and
B A )
v, Bv.p =129 8

while Av and BV denote the row matrices having the elements



A Av Av and B B Bv respectivel
V]. ’ 2 ? 3 V]. > V2 3 3 ? pe rveliy, then
B A
v = wC (9)
A X . . AD B .
Similarly, if D is any dyadic, and 1] and Dij (i,i = 1,2,3)
are defined as
A, & 4 .D.a (i,j = 1,2,3) (10)
ij ___i — __j H b E]
and
B A . ..
ij - Ei 2 hj (l’J - 1:2’3) (11)

while AD and BD denote square matrices having ADij and BDij s

. . .th .th
respectively, as the elements in the i row and j column, then

By = ¢t ®pc (12)

Use of the summation convention for repeated subscripts frequently
makes it possible to formulate important relationships rather concisely.

For example, if 6ij is defined as

8, L. j)2[5 -G - j)zl (i, j = 1,2,3) (13)

6ij B 4

-10-



1.2
so that 6ij is equal to unity when the subscripts have the same
value, and equal to zero when the subscripts have different wvalues,
then use of the summation convention permits one to express a set of

six relationships governing direction cosines as

= §. i,j = 1,2,3
C.p cjk 6ij (i,] ) (14)

or an equivalent set as

c =0 (i,j = 1,2,3) (15)

ki %ky T O13
Alternatively, these relationships can be stated in matrix form as

CcC = U (16)

and

ce = U (17)

where U denotes the unit (or identity) matrix, defined as

A1001
U= {0 1 0 (18)
0 0 1

Each element of the matrix C is equal to its cofactor in the

determinant of C ; and, if \Cl denotes this determinant, then

-11-



1.2

lcl =1 (19)

Consequently, C is an orthogonal matrix, that is, a matrix whose

inverse and whose transpose are equal to each other. Moreover,

Ic -ul =0 (20)

Hence unity is an eigenvalue of every direction cosine matrix. In
other words, for every direction cosine matrix C there exist row
matrices [Kl Ky K3] » called eigenvectors, which satisfy the

equation
= 2
[ky Ky k3] C = [k &, Kq] (21)
Suppose now that a, and Bi (i = 1,2,3) are fixed in reference
frames or rigid bodies A and B, respectively, and that B 1is sub-

jected to a simple rotation in A (see Sec. 1l.l1); further, that

a; = Ei (i = 1,2,3) prior to the rotation, that ) and 6 are

defined as in Sec. 1.1, and that Ki is defined as

(i=1,2,3) (22)

Then the elements of C are given by

-12-



11

12

13

21

22

23

31

32

33

Egqs. (23) - (31) can be expressed more concisely after defining

€a: as

ijk

A
€13k

N f=

(The quantity eijk

(i-

1.2

cos O + )\ 2(1 - cos 9)
1

= - Ay 8in 8 + &, A,(1 - cos @)

Ay sin 6 + Ay Kl(l - cos §)

Ay 8in 8 + )y k2(1 - cos @)

3

cos § + xzz(l - cos 9)

= -\ sing +a, k3(1 - cos 9)

]

= Ay 8in © + Aq Al(l - cos 9)

A, sin 9 + xz K3(1 - cos §)

1

it

cos § + x32(1 - cos §)

3) (3-k) (k-1) (i,3,k = 1,2,3)

vanishes when two or three subscripts have the

-13-
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(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)



1.2
same value; it is equal to unity when the subscripts appear in
cyclic order, that is, in the order 1,2,3, the order 2,3,1, or
the order 3,1,2; and it is equal to negative unity in all other
cases.) Using the summation convention, one can then replace Egs.

(24) -.(31) with

Cij = aij cos 8 ~ eijk hk sin 6 + Ai Aj(l - cos ) (i,j=1,2,3)

Alternatively, Cij can be expressed in terms of the dyadic C

defined in Eq. (1.1.2):

C..=a.,. a,. C (i, = 1,2,3)

All of these results simplify substantially when ) is parallel

to a,, and hence to b, (i

1,2,3)., 1f Ci(e) denotes C for

AL=a, = hi’ then

1 0 0
Cl(e) = 0 cos © -sin @
0 sin @ cos §
cos @ 0 sin ¢
cz(e) = 0 1 0
|~sin @ 0 cos @ |

-14-
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(34)

(35)

(36)



1.2

cos § =-sing 1
sin 6 cos § O 37)
0 0 1

C4(0) =

|

It was mentioned previously that unity is an eigenvalue of every
direction cosine matrix, If the elements of a direction cosine
matrix C are given by Egs. (23) - (31), then the row matrix
[Al KZ h3] is one of the eigenvectors corresponsing to the eigen-

value unity of C ; that is,

(A Agag) € =[a; A, gl (38)

Equivalently, when C 1s the dyadic defined in Eq. (1.1.2), then

=

. C=1 (39)

Derivations: For any vector v , the following is an identity:

v=(a; - Va + (g, . Va, + (a5 . Va,

Hence, letting 31 play the role of v, one can express hl as

by = (g - bpa; *+ (8 « bz, + (23 - bl

-15-



1.2

or, by using Eq. (1), as

+ C

o

31

Similarly,

and

These three equations are precisely what one obtains when forming
expressions for El , 92 s hﬁ in accordance with Eq. (2) and with
the rules for matrix multiplication; and a similar line of reasoning

leads to Eq. (5).

To see that Eq. (9) is valid one needs only to observe that

<
|
<
o
fo
=
Q
Jet
|
+
o
[N
[@!
)
+
o
[t}
o
W
e’

~16-



1.2

Y A A
s vy Cpg Ty Cgp vy gy

and to recall the definitions of Av and Bv . Similarly, Eq. (12)

follows from

B -
Pij = (2 Gy + 2y Gy Tag Cyy) - D (g Gy tay Cyy +oay Ogyp)
(11,2)
= St (ADli €y " AI)12 o3 * AD13 Cs5)
(10)
A
+ ¢, (p,c +%, . ¢ . +%. . c.)

+ C31(%31 Ci3 * %, Cpy * *py4 Cs5)

and from the definitions of AD and BD .

As for Eqs. (14) and (15), these are consequences of (using the

summation convention)

a. . a. = c,. C (i’j = 1s2’3)
i i (1,5) ik “jk

and

-17-



1.2
respectively, because a; - ij is equal to unity when i = j , and
equal to zero when i # j , and similarly for hi . hj ; and Egs. (16)
and (17) can be seen to be equivalent to Eqs. (l4) and (l5), respect-
ively, by referring to Egs. (3), (4), and (18) when carrying out the
indicated multiplications.
To verify that each element of € is equal to its cofactor in

the determinant of C , note that

b, = Cy3ay + Cyya, + C3p24
(2)
and
by x' By = (€055 - C55Cy3)ay
(2)
(G305 = C1yC55)2
(G503 = CyyC13)a,

so that, since b, = b, x b.

1= by because b b b, form a dextral

3 212 22 23

set of orthogonal unit vectors,

11 = 99033 7 C35%23

21 = C39C13 = €19C35

-18-



1.2

and

€31 = C12%3 = €223

Thus each element in the first column of C (see Eq. (3)) is seen to
be equal to its cofactor in C ; and, using the relationships

22 = 93 X 21 and b, = hl X 22 s one obtains corresponding results

for the elements in the second and third columns of C . Furthermore,

expanding C by cofactors of elements of the first row, and using Eq.

(14) with i = j= 1 , one arrives at Eq. (19).

The determinant of C - U can be expresses as

lc - ul = Jch Cpy + Cpp * C

&) 22 T C33 F G50y + Cp3C3, + C54Cyq
= (€y3Cyp + CypCgq + C33Cy4) - 1

Hence, replacing C11 R 022 , and C33 with their respective cofactors

in ‘Ct, one finds that
lc -ul=kl-1=0
(19)

in agreement with Eq. (20); and the existence of row matrices

[Kl Ky K3] satisfying Eq. (21) is thus guaranteed.

-19-



1.2

The equality of ) . a; and ) . Ei in Eq. (22) is a consequence
of the fact that these two quantities are equal to each other prior
to the rotation of B relative to A , that is, when a; = Ei » and
that neither ) . a, nor ) . gi changes during the rotatiom, since,
by construction, ) is parallel to a line whose orientation in both
A and B remains unaltered during the rotation.

With 2 and b replaced by a; and gj , respectively, Eq. (1.1.3)

becomes

Hence

C,. = a,.b.=a .a,.cC (i,j = 1,2,3)
1] (l) L ] -1 3

which is Eq. (34). Moreover, substituting for C the expression given

in Eq. (1.1.2), one finds that

=3a; . ay cos 6 - a; . a; X)L sin® +a .2 . a, (1 - cos 9)

(i’j = 132’3)

and this, together with Eq. (22) leads directly to Egs. (23) - (31), or,

in view of Eq. (32), to Eq. (33).

-20-



1.2
Eq. (35) is obtained by setting Ki =1 and kz =i, =0 in
Eqs. (23) - (31) and then using Eq. (3). Similarly, A = 0, a,=1,
and h3 =0 lead to Eq. (36), and Xl = XZ =0, 13 = 1 yield Eq. (37).

*
Finally, Eq. (39) is derived from the observation that

= A+ Ucos g -) . Asin g + LZL(I - cos @)
(1.1.2)

=)rcos §+ 0+ )(1 cos §) = )\

since ) 1is a unit vector, so that ‘L? AL «Ar=1; and the equivalence
of Eqs. (38) and (39) follows from Eqs. (22) and (34).

Example: Iﬁ Fig. 1.2.1, B designates a uniform rectangular
block which is part of a scanning platform mounted in a spacecraft A .
Initially, the edges of B are parallel to unit vectors 2y » 2, and
2, which are fixed in A , and the platform is then subjected to a
simple ninety degree rotation about a diagonal of B , as indicated in

the sketch. If I is the inertia dyadic of B for the mass center

*
B of B, and AIij is defined as

. I . a, (i:j =1,2,3)

what is the value of AIij (i,j = 1,2,3) subsequent to the rotation?

* When it is necessary to refer to an equation from an earlier section,
the section number is cited together with the equation number. For
example, (2.3.4) refers to Eq. (4) in Sec. 2.3.

-21-
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=3
B . 2
2
41, 1
l /
- = /
L/'E*// A
3L B - —
12L
Figure 1.2.1
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a.

1.2

(i =1,2,3) be a unit vector fixed in B and equal to

Let b,
=i
(i = 1,2,3) prior to the rotation; and define BIij as
B A L.
ij - = . .I_ . P“J (l,J = 1,2,3)
Then 91 ’ QQ , and 23 are parallel to principal axes of inertia of

*
B for B, so that

B _B _B _B _B _B _
Tpg = 150 = Ip3 % I3 = I3y = 113=0
and, if m is the mass of B ,

B. _m, .2, .22 _ 153 _2
I11 = 12(12 + 37)L" = 12 mL

B. _m .2, ,2.2 25 2
122 = 12(3 + 4 )L = 12 mL

and

B m 2 2..2 160 2

133 = 12(4 + 127)L = 12 mL

Hence, if BI denotes the square matrix having BIij as the element

row and j column, then

in the 1
, | 153 0 0
B; E%L- i 0 25 0
L 0 0 60

-23-
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The unit vector ) shown in Fig. 1l.2.1 can be expressed as

\ = 431 + 12§_2 + 333 4 W+ 12. 43 4
A 7 T = =l 13-2 7133
%+ 127 + 393 13

Consequently, Ay oo Ao and Ay s “if defined as in Eq. (22), are

given by

and, with @ =mn/2 rad ., Egqs. (23) - (31) lead to the following

expression for the direction cosine matrix C :

16 9 168
C = =A| 87 144 -16 (b)
3) 169
-144 88 9

A
If AI is now defined as the square matrix having Ii' as the

.th .th
element in the i row and ] column, then

BI = CT AI C ()

(12)

and simultaneous pre-multiplication with € and post-multiplication

T
with C gives

-2



Consequently,

A mL2

I =
(a,b,d)

mL2

12 x 169 x 169

and

and so forth.

12 x 169 x 169

1.2

T A A

16

168

ICcC = uhru="t
(16,17)
16 9 168} 153 0 0l
87 144 61 |0 2 0]
144 88 9] [0 0 60
4557033  -184604  -92792]
- 184604 1717417 -1623024
| -92792 -1623034 3379168 |
2
4557033 mL

12 x 169 x 169

184604 mL>

T 12 x 169 x 169

-25-
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87
144

-~16

-144
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1.3 Euler parameters

The unit vector A and the angle © introduced in Sec. 1.1 can

be used to associate a vector & , called the Euler vector, and four

scalar quantities, EpaeersBy s called Euler parameters, with a simple

rotation of a rigid body B in a reference frame A by letting

E_é A sin (6/2) (1)
€, & € *a, =g * b, (i=1,2,3) (2)
i - = =
and
A
g, = cos (6/2) (3)
where a

1° 255 25 and -hl s EQ s 23 are dextral sets of orthog-

onal unit vectors fixed in A and B respectively, with a, = gi

(i = 1,2,3) prior to the rotation. (Where a discussion involves more
A B A B
€ e,
— i

than two bodies or reference frames, notations such as and

will be used.)

The Euler parameters are not independent of each other, for the

sum of their squares is necesgsarily equal to unity:

2 3 &, T E + €& = 1 (4)

An indication of the utility of the Euler parameters may be gleaned
from the fact that the elements of the direction cosine matrix C dintro-

duced in Sec. 1.2 assume a particularly simple and orderly form when

-26-
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expressed in terms of €yseces€y * If Cij is defined as

C4 a, - b, G =1,2,3)
then

Ciq = €12 - 822 - 332 + 542 =1~ 2522 - 2332
Cpg = 20518y = £38,)
013 2(5381 + 8264)
021 = 2(8182 + 6384)

sz = 822 - 832 - elz + 842 =1 - 2632 - 2812
C3 = 2(e585 = &18y)
Cyp = 2(e38; = €58,)
032 = 2(8263 + 8184)

033 = 632 - 612 - 322 + 542 =1 - 2912 - 2522

(5)

(6)

N

(8)

9

(10)

(11)

(12)

(13)

(14)

The Euler parameters can be repressed in terms of direction cosines

in such a way that Egqs. (6) — (14) are satisfied identically.

accomplished by taking

-27-
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2 fa2 O
1 484
G E B
2 484
_ %" %
€3 434

and

Wj=

=2 @+cp +C

&4 11 T Cyp + C39)

Since Eqs. (1) and (3) are satisfied if

elél + 8252 + €,.a
2 2
+
(al + €, £y )

A=

and

A
[« 2]
A
=

6 = 2 cos-‘1 (84) s 0

one can thus find a simple rotation such that the direction cosines
associated with this rotation as in Egs. (1.2.23) - (1.2.31) are equal
to corresponding elements of any direction cosine matrix C that sat-
isfies Eq. (1.2.2). 1In other words, every change in the relative

orientation of two rigid bodies or reference frames A and B can be

@as

(16)

an

(18)

19

(20)

produced by means of a simple rotation of B in A . This proposition

is known as Fuler's Theorem on rotation.

-28-



1.3
As an alternative to Eqs. (1.1.1) and (1.1.3), the relationship be-

tween a vector a fixed in a reference frame A and a vector b fixed
in a rigid body B and equal to a prior to a simple rotation of B in

A can be expressed in terms of ¢ and €, as

b=a+2leexatsx (cxal @

Derivations: The equality of ¢ - a,; and ¢ - gi [see Eq. (2)]
follows from Egs. (1) and (1.2.22); Eqs. (4) are consequences of Egs.
(1) - (3) and of the fact that ) is a unit vector; and Egs. (6) - (14)
can be obtained from Eqs. (1.2.23) - (1.2.31) by replacing functions of
® with functions of 6/2 and using Eq. (1.2.22) together with Egs. (1)
+ (4). For example,

c = 2 cos2 (e/2) - 1 + 22 2 sin2 (6/2)

11 1.2.23) 1

and
A, sin (8/2) = Aea, sin (8/2) = €+ a, = ¢
l ) — Pomeoly — ——
(1.2.22) 1 (1) Ly ¢
while
cos (8/2) = €y
(3)
Hence
2 2 _ 2 2 2. 2
Cll 234 1+ Zel (Z) € T €y " €4 -+ €

-29-



1.3
in agreement with Eq. (1).
The validity of Eqs. (15) - (18) can be established by showing
that the left-hand members of Eqs. (6) -~ (14) may be obtained by sub-

stituting from Eqs. (15) - (18) into the right-hand members. For

example,
2 2
1- 262 - 253
2(L+C.+C.+C.)-C.2+20.¢.-c.?>-c. 2+ c. -
- - 711 22 33 13 13731 31 21 12721
(16-18) 2(1 + Ciq * Cyp + c33)
C.. +¢C +C..Co +C..Cow +0C..2

11 T Cgp T C35 + C14Cqy + Cy5Cop + Cpy

(1.2.14) 1+Cyy +Cyy +Cyy

But, since each element of C is equal to its cofactor in [Cl s

C13Cq3 = C31C35 — Cyy

and

C12%21 = €11C92 ~ C33

Consequently

2
L2 Tl Tl O
3 1+ Cll + C22 + C33 11

1- 28,2

as required by Eq. (6).

To see that Egs. (1) and (3) are satisfied if A and 6 are given
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by Egqs. (19) and (20), note that

cos (8/2) =gy
(20)
which is Eq. (3), and that
1 1
sin (8/2) = (1 - 842)?' = (812 + 822 + 532)?
(20) (4)
so that
A sin (8/2) = e.a, +€,a, + €2, = €
(19) 1-1 2=2 33 (2)

as required by Eq. (1). Finally, Eq. (1.1.1) is equivalent to
b=a+iAxasin 6+ )i x (A xa)(l - cos 9)
= a+ 2 x acos (8/2) + 2e x (e x a)

= _a_+2[s4_§x§_+£x(£x§)]
in agreement with Eq. (21).

Example: Triangle ABC in Fig. 1.3.1 can be brought into the
position A'B'C' by moving point A to A' without changing the
orientation of the triangle and then performing a simple rotation of

the triangle while keeping A fixed at A' . To find A , a unit

vector parallel to the axis of rotation, and to determine 6 , the
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B B

b,

‘ S L

e N a
/ AN =
. ¢!
b,
b, 23

Figure 1.3.1
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associated angle of rotation, let the unit vectors 2, and Ei

(i =1,2,3) be directed as shown in Fig. 1.3.1, thus insuring that

a; = hi (1 =1,2,3) prior to the rotation; determine Cij by
evaluating a; * hj s and use Egqs. (15) - (18) to form €; (1 =1,...,4):
1 %
e, = 5@ +a +b+a,by+a;- by
4 (18) 2 1 2 2 3 3
_1 F_L
=31+ 0+0+0)7 =3
€ =E3.h2—i2']23=1-0=;-
1 as)y 4(1/2) 2 2
€ = 21 i h' _ 23 i 21 = - 0 = _-l
2 (16) 4(1/2) 2 2
. _ 2, b -2 *b _ -1-0 __1
3 17 4(1/2) 2 2
Then
l-a - l-a -1 a a, - a, - a
, = 227222733 AH 75735
T @9) (3/4)7 V3
and
-1
8 = 2cos ~ (1/2) = 2n/3 rad.
(20)
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1.4 Rodrigues parameters

A vector p , called the Rodrigues vector, and three scalar

quantities, Py s Py p3 , called Rodrigues parameters, can be

associated with a simple rotation of a rigid body B in a reference

frame A (see Sec. 1.1) by letting

o &% tan (e/2) (1)

and

>
o
L]
»

(i =1,2,3) (2)

o= 1}
2k
where A and 6 have the same meaning as in Sec. 1.1, and 21 5 2y
2, and by 92 s 93 are dextral sets of orthogonal unit vectors
fixed in A and B respectively, with 2, = Ei (i =1,2,3) prior
to the rotation. (When a discussion involves more than two bodies or

. AB A B ,
reference frames, notations such as “p~ and CH will be used.)
The Rodrigues parameters are intimately related to the Euler

parameters (see Sec. 1.3):

£,
i .
oy =T (1=1,2,3) 3)
£
4
An advantage of the Rodrigues parameters over the Euler parameters is
that they are fewer in number; but this advantage is at times offset by

the fact that the Rodrigues parameters can become infinite, whereas the

absolute value of any Euler parameter cannot exceed unity.
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Expressed in terms of Rodrigues parameters, the direction cosine

matrix € (see Sec. 1.2) assumes the form

2 2 2
1+o" - Py = Py 2(9192 - 93) 2(039l + 02)
2 2 2
2(0192 + 03) L+p, =p5 - oy 2(0203 - pl)
. !
2 2 2
! 2(0301 - oz) 2(0293 + ol) L+peg =01 =0
L _
€= ' 2 2 2 )
1+ pl + p2 + p3

The Rodrigues vector can be used to establish a simple relationship
between the difference and the sum of the vectors a and b defined in
Sect. 1.1:

a-b=(@+h) xp (5)
This relationship will be found useful in connection with a number of
deviations, such as the one showing that the following is an expression
for a Rodrigues vector that characterizes a simple rotation by means of
which a specified change in the relative orientation of A and B can
be produced:

© - B x & - 8y

£ (@; +By) - (@, - B,) ®)

where o, and 8, (i = 1,2) are vectors fixed in A and B , re-
spectively, and o, = éi (i = 1,2) prior to the change in relative

orientation. Rodrigues parameters for such a rotation can be expressed as
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1 G~
o a2’
2 G337 Cy3
o _ S23F 3
3 G Gy

Derivations: The equality of p * a, and p * b [see Eq. (2)]

)

(8)

(9

follows from Eqs. (1) and (1.2.22); and Eqs. (3) are obtained by noting that

€
— A tan (8/2) = p

A (1.3.1:1.3.3) (1)

so that

i=1,2,3)

From Eq. (1.3.4) »

Hence

€
4 l+p12+p2+p

2

and
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2 2 2 2
C = £ - £ - € + €
11 (1.3.6) 1 2 3 4
2 2 2

= pg € P, € P, € + €

1 74 2 74

2 2 2

2 2 2 g Py TPy —eg *1
= (p, = p, =0, + 1), =

1 2 3 4 1+ 2 + 2 + 2

- TPy TPy TP,

in agreement with Eq. (4) and the remaining elements of C are found
similarily.
As for Eq. (5), note that cross-multiplication of Eq. (1.3.21) with

€ yields

|
X
|o*
L}

exa+2{gex(exa)tex[exa)l (a)
Hence

ex(@+b)=gxat+texh

= 2{exateex (exa)+exlex (exa)l (b)
(a)
Now
exlex exa)l=-cexa = -(612+€22+€3‘2)§X3
(1.3.2)
= G -Dexa ()
(1.3.4)
Consequently
ex (@+bd = 2eexat+ex (gxa]
(CHY)
= e, (b ~ a)
.3.21) @
and
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a-b = (a+Db)x (g/e,)
(d)

= (a+ D) x A tan (6/2) (@+b) xp
(1.3.1,1.3.2) ()

which is Eq. (5).

Eq. (6) can now be obtained by observing that

o =By = (o +8y) xp (e)
1 l(5> 1 1
and
o, -8B, = (o, +B,) xp (£)
2 2 (5) 2 2
so that
=(9i1+§.1) ’ (2.2".@.2).9_" (_o_Ll+_B_1)_p__' (9".2".@_2)
= (@, +8,) ¢ (@, -8,)p—-0
S2 £ Lo T Eg/E
(£) 1 1
from which Eq. (6) follows immediately.
Finally, to establish the validity of Egs. (7) - (9), take
=a (g)
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and hence
By =% = Gyi83; ¥ Cya, +Cyia (h)
1721 5,y (1t T Oy * Oy
and
B,=b, = Cpa +Cpa +Cpa )
2722 4 5.9 1281 Conp * O3y
Then
(@) + 8y + (o) - By) (oot) Ca1 7 €12 = (C3Cyp + €938y + C33C39)
= C,y - C H
(1.2.14) 21 12
aad
(@) - By) x (2, - By) (i) [Cy1C3p + €33 (1 = Cyp)1ay

+ €305 + €3, @ - Cppd 18y,

+ IA - 1) - Cyp) = CyyCpplag ()

so that

Py = p* a3, = (21 _ Ei) - QEZ _ EQ) v a
1@ 15y (@ +8) v (g -8y -1

Cy1€32 = C31Cyp + Cgy o
Ca1 = Cy9

(1,k)
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Now, C21C32 - C31022 is the cofactor of 013 in the determinant of

C, and is thus equal to C,,4 (see Sec. 1.2). Consequently, Eq. (£)
is equivalent to Eq. (7); and Egs. (8) and (9) can be obtained by
cyclic permutation of the subscripts in Eq. (7).

Example: Referring to Fig. 1l.4.1, which depicts the rigid body
B previously considered in the Example in Sec. 1.1, suppose that B
is subjected to a one-hundred-and—-eighty degree rotation relative to
A about an axis parallel to the unit vector A ; and let Ei
(i = 1,2,3) be a unit vector fixed in B and equal to a, 1=1,2,3)
prior to the rotation. The direction cosine matrix C satisfying
Eq. (1.2.2) subsequent to the rotation is to be determined.

For 6 =m vrad., Eq. (1) yields a Rodrigues vector of infinite
magnitude, and Eqs. (2) and (4) lead to an indeterminate form of C .
To evaluate this indeterminate form, one may express each element of C
in terms of 6 and A - a, (1 =1,2,3) by reference to Egs. (1) and
(2), and then determine the limit approached by the resulting expres-
sion as © approaches m rad., Alternativly, one can use either Egs.
(1.2.23) -~ (1.2.31) or Eqs. (1.3.6) - (1.3.14) to find the elements of
C . The latter equations are particularly convenient, because, for

6 =mr,

T (1.3.1)

so that

€&y T . Atz (1 =1,2,3)
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and

€ = 0
4 (1.3.3)
Hence, with
=3 4
A=53,+t52,
one finds immediately that
- =3
€ = 0, €y =% »

-25 0
-1 -
C=3g| O 7

0 24
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1.5 Indirect determination of orientation

If a;, 3,5 24, and b, , b, , b, are dextral sets of
orthogonal unit vectors fixed in reference frames A and B respect-
ively, and the orientation of each unit vector in both reference frames
is known, then a description of the relative orientation of the two
reference frames can be given in terms of direction cosines Cij
(i, = 1,2,3), for, in accordance with Eq. (1.2.1), these can be found
by simply evaluating a; * hj (i, = 1,2,3) . But, even when these
dot-products cannot be evaluated so directly, it may be possible to find
Cij (i,j = 1,2,3) . This is the case, for example, when each of two
non-parallel vectors, say p and g , has a known orientation in both
A and B, so that the dot-products 3, *Ps 2 "4, bi ‘P>
and bi +q (i=1,2,3) can be evaluated directly. In that event, one

can find Cij as follows: TForm a vector r and a dyadic o by letting

fie>

x

pPx4q 1)
and
A 2
g=(xgqr+gxzxp+rxpg/r (2)

Next, express the first member of each dyad in Eq. (2) in terms of a

_i H
and the second member in terms of bi (i=1,2,3) . Finally, carry out
the multiplications indicated in the relationship

Cijy=23; "9 hj (1,3 = 1,2,3) (3)
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Deviation: It will be shown that the dyadic o defined in Eq. (2)

is a unit dyadic, that is, that for every vector v ,

The validity of Eq. (3) can then be seen to be an immediate consequence
of the definition of Cij » given in Eq. (1.1.1).
If p and g are non-parallel, and r is defined as in Eq. (1),

then every vector v can be expressed as
v = ap + Bq + vr (a)

where o, B, and vy are certain scalars. From Eq. (a),

v+ @xzx)=o0p- (@gxxr)+Bg- (@xzr)+vyr- (g xr
=a(pxgq) x+0+0
= oc1:_2 (b)
(1)
so that
2
o = v+ (qgxr)r (c)

(b)

Similarily, scalar multiplication of Eq. (a) with r xp and p x g

leads to the conclusion that
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2
B=v - (x£xp)r (d)
and
2
y=v- (xq/r (e)
Substituting from Eqs. (¢) - (d) into Eq. (a), one thus finds that
v=Iv:(@xpp+y- (£xpg+y:- (p_><_c1)£]/£2

=v-l@xm+rxpg+pxad/r’] = v-o
(2)

Example: Observations of two stars, P and Q , are made simul-
taneously from two space vehicles, A and B , in order to generate
data to be used in the determination of the relative orientation of A
and B . The observations consist of measuring the angles ¢ and ¥
shown in Fig. 1.5.1, where 0 represents either a point fixed in A
or a point fixed in B, R 1is either P or Q , and [ &y s 53
are orthogonal unit vectors forming a dextral set fixed either in A or

B . For the numerical values of these angles given in Table 1, the

direction cosine matrix C 1is to be determined.
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Figure 1.5.1
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Table 1

Angles ¢ and ¢ in degrees

P Q
U (7 ¢ 7
< =3, 90 45 30 0
. - 135 0 90 60
=i —i

If R is defined as a unit vector directed from O toward R (see

Fig. 1.5.1), then
R = cos ¥ cos le + cos ¥ sin ¢92 + sin wg3

Hence, letting p and ¢ be unit vectors directed from O toward

P and toward Q , respectively, and referring to Table 1, one can

express each of these unit vectors both in terms of a, , 2, 5 24

and in terms of 21 s 22 . 23 , as indicated in lines 1 and 2 of

Table 2; and these results can then be used to evaluate r [see

Eq. (1)1, gxr, and ¥ xp . Noting that (see line 3 of Table 2)
Table 2

Vectors appearing in o

- e
e verr | A 2 % A B D
1 3 0 vZl2  Y3j2 | -/Z/2  V3/2 o
2 q /3/2 1/2 0 0 /2 V/3/2
3 lr=pxgq, -/2/6 V6/4 -/6/4 | V6/&  VBl4 V2[4
-— —— — . e er wrn ¢ ot sttty b Aot A et e A .,__,__.i;
4 1 gxzx -/6/8 372/8  V/2/2 - - -
JOROVU EUUS S — e <
5 . xxp | V32 V4 =174 - - -
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~|oo

_6
61

O
61

O
S

ol

one thus obtains

(34) 0 ~}oo
Q= + =
! L%ﬂ L%ﬂ

o~
_/sw_u Qg
] +
+ a7 al
!
ol mu ™ ey
|
Loj _ *
T e =2~
| o P
ope g i
1 + i~
o o 1
) naa* LA
Ol .
rv_ Q,Rv I
+V_ + +
g
rvm mm_Ru Rm_
—~— I NS’
~——
~
NN
S/

and

and so forth; that is,
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1.6 Successive rotations

When a rigid body B is subjected to two successive simple ro-
tations (see Sec. 1.1) in a reference frame A , each of these rotatiouns,
as well as a single equivalent rotation (see Sec. 1.3), can be described
in terms of direction cosines (see Sec. 1.2), Euler parameters (see
Sec. 1.3) and Rodrigues parameters (see Sec. 1.4); and, no matter which
method of description is employed, quantities associated with the indi-
vidual rotations can be related to those characterizing the single
equivalent rotation. In discussing such relationships, it is helpful
to introduce a fictitious rigid body B which moves exactly like B
during the first rotation, but remains fixed in A while B performs
the second rotation. For analytical purposes, the first rotation can
then be regarded as a rotation of B relative to A , and the second
rotation as one of B relative to B .

If a; 1=1,2,3), b

i

are three dextral sets of orthogonal unit vectors fixed in A, B,

(1=1,2,3), and b, (i=1,2,3)

and B respectively, and such that a, =b, = Ei (;_f 1,2,3) prior
to the first rotation of B din A, and if ACB . BCB , and ACB
are the associated direction cosign matrices characterizing respectively

the first, the second, and the single equivalent rotation, so that

[by by byl = lay

|

C 1)

o
(o

[bl EQ E3] = [21 29 c 2

and
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- AB
[hl b, h3] = [_a_l 2, _a_3] c (3)

then ACB » expressed in terms of ACB and BCB s, is given by

¢ = "¢ °C (4)

L 23 A
p = (5)

To state the analogous relationship in terms of Euler parameters, we

first define three sets of such parameters as follows: With E& and hi

(i =1,2,3) directed as after the second rotation, and with el . 62 s

and 6 denoting respectively the radian measures of the first, the second,

and the equivalent rotation,

>
|

>
B>
p
o

€ e+ a ="€g °* E& (i =1,2,3) (6)
EsiB A ﬁEB .5, - EEB Cb, (=1,2,3) N
A 113 AAB a = AB b, (1=1,2,9 )

AE;E L cos (61/2) (9)
_}5843 4 cos (62/2) (10)
AEAB & cos (6/2) (11)
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It then follows that

A B A B A B A_B A B B_ B
1 €4 €3 2 ®1 1
A B A B A_B AR A B B_3B
€2 €3 4 1 2 2
- | (12)
A B! | A B A A A_B| 3B _B
€3 | g €2 1 4 3] %3 |
A_B ' AE AE A B A B B_B
4 0 |71 2 3 & | b
Furthermore,
AB _ AB 3843 + BB A€4B + BB L AB (13)
and
A_B_A BB B_AB_ BB
€, = &, & E € (14)

Egs. (4), (5), (12), and (13) all reflect the fact that the final
orientation of B in A depends upon the order in which the successive
rotations are performed. For example, in Eq. (4), Adﬁ and EEB can-
not be interchanged without altering the result, and in Eq. (13) the
presence of a cross-product shows that order cannot be left out of account.

Repeated use of Eqs. (4) - (14) permits one to construct formulas
for quantities characterizing a single rotation that is equivalent to

any number of successive rotations. For example, for three successive

rotations,

-51-



>
=
>
=~}
L)
o
&
==}

c ="C CC (15)

wil

B

where 2cB, BcB, ana BcP

are direction cosine matrices associated
with the first, the second, and the third rotation, respectively.

Derivations: Substitution from Eq. (1) into Eq. (2) gives

_ AB BB

and comparison of this equation with Eq. (3) shows that Eq. (4) is
valid.

To obtain Eq. (5), let a , :E » and b be vectors fixed in A ,

B, and B, respectively, and choose these in such a way that a = E:=.h

prior to the first rotation of B in A . Then, in accordance with

Eq. (1.4.5), there exist Rodrigues wectors égB . ?g? , and AQF sat-

isfying the equations

a-%=(@a+D x %" (a)

E-b=@E+b x 5P ®)
and

a-b=(a+h x® (c)

Cross-multiply Eqs. (a) and (b) with “p~ and ég? , respectively;
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subtract the resulting equations;

and

to eliminate b
This leads to
B x (%P + BoB) = a x BB

1.6

and use the fact that

AB
L

[o
fo*l

o

) (@

Next, add Egs. (a) and (b), and eliminate :E by using Eq. (d), thus

obtaining

2

-b=(a+Db)x

(e)

Together, Eqs. (e) and (c) imply the validity of Eq. (5), for Eqs. (e)

and (c) can be satisfied for all choices of the vector a only if Eq. (5)

is satisfied.

As for Eqs. (13), and (14), note that it follows from Eqs. (1.3.1),

(1.3.3), and (1.4.1) that

AB _
-e_

AEE / A84'1§ (£)
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.'ISB='EEB/,§€ B ()
P £/ g, g
and

5" = AP /e, (8)

Consequently,

= g, — (1)
(£,8) A BB B AB BB

and, dot-multiplying each side of this equation with itself and using

Eq. (1.3.4), one finds that

—— - - \2

A BB B AB BB

(AB)Z (A B>21'<5 €, ~ £ ° >
€ = €4

4 £
p— N7 @
A BB B AB BB

But

2 2
<AEB> .- <A€43> )
(1.3.4)

Hence
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<A B>2 ~ (A BE B AB .S B>2 (2)
e, = g, &, ~ E e
(J,k)

and
ALB _ J_r(AE BB B_AB, B€B> )

so that, using the upper sign, one obtains Eq. (14). Furthermore, sub-
stitution into Eq. (i) then yields Eq. (13).

Finally, to establish the validity of Eq. (12), it sufficies to
show that the four scalar equations implied by this matrix equation
can be derived from Eqs. (13) and (14). To this end, one may employ
Eqs. (6) and (7) to resolve the right-hand member of Eq. (13) into
components parallel to Ei R Eé » and Eé

sides of the resulting equation successively with b. b

1° 22°
A B

and then dot-multiply both
and 23 s
using Eq. (9) to evaluate

form hi . hj ,» which gives, for example,

b, ¢ b =
=2 73 1.3.11)

In this way one is led to the first three scalar equations corresponding
to Eq. (12); and the fourth is obtained from Eq. (14) by making the

substitution
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Example: In Fig. 1.6.1, 25 3,5 and a, are mutually perpen-

dicular unit vectors; X and Y are lines perpendicular to a. and

1 0
making fixed angles with a, and as s and B designates a body that
is to be subjected to a ninety degree rotation about line X and a one-
hundred-and-eighty degree rotation about line Y , the sense of each of
these fotations being that indicated in the sketch.

Suppose that the rotation about X dis performed first. Then, if
21 » b s and b

2 3 are unit vectors fixed in B , there exists a

matrix Cx such that, subsequent to the second rotation of B ,
[b; by byl = [a; 2, a,lC,

Similarly, if the rotation about Y is performed first, there exists

a matrix Cy such that, subsequent to the second rotation of B ,
[by By b3l = [a; 2, a31C,

Cx and Cy are to be determined.

In order to find Cx by using Eq. (4), one may first form ACB

by reference to Eqs. (1.2.23) - (1.2.31) with 6 = w/2 and
A, =0, A, = ¥3/2, A, = 1/2

3

which gives
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Figure 1.6.1
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0 - 1/2 Y3/2
Aci = 1/2 3/4 V3/4
-/3/2 Y3/4 1/4

Next, to construct the matrix BCB » One must express a unit vector

A which is parallel to Y in terms of suitable unit vectors 21 s Eé

and :EB . This is accomplished by noting that A , resolved into com-

ponents parallel to 2,5 3, and 25 5 is given by

so that, using Eq. (1.2.9) and AC , one obtains

With 6 =7 , Egs. (1.2.23) - (1.2.31) then provide

- 1/2 - 3/4 —/37/4‘1
BB = | = 374 1/8 3/3/8
~V3/4 3/3/8 - 5/8

Consequently,
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0 1/2 —f3‘/2_
c, = AB BB _|_; 0 0
(4)
0 /3/2 1/2

’ GY can be found similarly. Alternatively, one may use Euler par-
ameters, proceeding as follows:

With A expressed in terms of 31 5 3y 5 and a

3 and with

6 = 1, Eq. (1.3.1) gives

>

|

ho)
™

[
[}
o]k
|
+

and, from Eq. (1.3.3),

.EeB = (-fz a, + l-a >3§Z
and
B3 _ 2
4 (1.3.3) 2
Hence -
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AB 1 3 V2 V2
e = (Fa +—53a,)—5+0+—Fa
(l3)<2 2 2 3) 2 4 —1
so that, in accordance with Eq. (8),
AB_ /2 A_B_12 A B_6
1 4 ° 2 4 €3 A
while
AB _ _ /6
4 (11) 4

The elements of Cy can now be obtained by using Egs. (1.3.6) -

(1.3.14), which gives

0 1 0
c, = -1/2 0 vY3/2
/3/2 0 1/2
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1.7 Orientation angles

Both for physical and for analytical reasons it is sometimes desir-
able to describe the orientation of a rigid body B in a reference frame
A in terms of three angles. For example, if B is the rotor of a
gyroscope whose outer gimbal axis is fixed in a reference frame A ,
then the angles ¢ , 6 , and ¢ shown in Fig. 1l.7.1 furnish a means
for &escribing the orientation of B in A in a way that is particularly
meaningful from a physical point of view.

One scheme for bringing a rigid body B into a desired orientation
in a reference frame A 1s to introduce a, , a, , a, and b, , b,,
b; as dextral sets of orthogonal unit vectors fixed in A and B,
respectively; align gi with a; (i =1,2,3) ; and subject B succes=-
sively to an 2, rotation of amount 61 s, and a, rotation of amount
62 , and an 2 rotation of amount 63 . (Recall that, for any unit
vector A , the phrase ")\ rotation" means a rotation of B relative
to A during which a right-handed screw fixed in B with its axis
parallel to A advances in the direction of A .) Suitable values of .
61 . 92 » and 63 can be found in terms of elements of the direction
cosine matrix C (see Sec. 1.2), which, if 8y and ¢ (1 =1,2,3)

i
denote sin ei and cos ei (i = 1,2,3) respectively, is given by

czc3 slszc3 - s3c1 clszc3 + s3s1
C= Cy84 s’lszs3 + €484 C18584 = Cg8; )
L—sz slc2 clcz ]

Specifically, if ]031] # 1, take
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line fixed in A

inner gimbal axis

line fixed in B,
perpendicular
to rotor axis

' ¢
=~ T\
. \\\\Y\\\\\ outer gimbal axis

rotor axis \

Figure 1.7.1
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-1 T i R
62 = sin (_—031) s ) < 62 < 3 (2)
Next, after evaluating Cy > define o as
A -1 ) )
o = sin (C32/c2) . -y sos g (3
and let
; o 1ifcC,,20
61 = 33 (%)
T - o if 033 <0
Similarly, define B8 as
A, -1 _x T (5)
B = sin (C21/C2) ’ 9 £ Bs )

and take

B if C >0
0, = \ 11 (6)
m™ -8 if Cll <0
If |C31l =1, take
Tr oy
_ —-E if C31 = 1
8, = . )]
E-if C31 = -1
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and, after defining o as
o a sin_l(-C ) -l o<t (8)
237 2= =2
let
o ifc.,,=>20
91 - 22 (9)
T - o if 022 <0
and
8, =0 €11))

In other words, two rotations suffice in this case.
A second method for accomplishing the same objective is to subject

B successively to a b, rotation of amount 6, , a b, rotation of

2
amount 62 , and a EB rotation of amount 63 . The matrix C re-
lating 215 255 255 to 21 s EQ , -h3 , as in Eq. (1.2.2) sub-

sequent to the last rotation is then given by

C,yCq —C,84 s,
C = 5185C4 + §4¢4 ~8,8,84 + CaCq -s,¢, (11)
—clczc3 + Scsl c13253 + c3sl clc2

and, if |C13| # 1 , suitable values of 6 8 and ©

1 Y2 3 are
obtained by taking
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o, = gin L (C

2 13) ’

Q
]

A . -1
sin (—C23/c2) .

. - l o if C3
1 tw -0 if C3
B = s:i.n"l (-C,,/c.)
12/%27 »
_[ g if C11
63 =
T~ R if Cll
whereas, if ]Cl3[ =1, one may let
T
. _{ 57 1f Ciq
2 T
-3 if C13
A -1
o = sin (C32) . -
{ a if 022
61 =
T - o if sz

so that, once again, only two rotations are
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The physical difference btween these two procedures for bringing
B into a desired orientation in A is that the first involves unit
vectors fixed in the reference frame, whereas the second brings unit
vectors fixed in the body into play. What the two methods have in common

1

is that three distinct unit vectors are employed in both cases.

It is also possible to bring B into an arbitrary orientation
relative to A by performing three successive rotations which involve
only two distinct unit vectors, and these vectors may be fixed either
in the reference frame or in the body. Specifically, if B is subjected
successively to an 2, rotation of amount 8, , an a, rotation of
amount 62 , and agaiﬁ an  a; rotation, but this time of amount 93 .

then

2 183 €152
C = S8, ~81C,84 + X =C1Cy83 = Cg8; (21)
—5203 slczc3 + S3C1 clczc3 - sssl«J
and, if Iclll # 1 , one can take
8, = cos_l(c ) 0<8, < (22)
2 117 ° 2
A L -1
o = sin (Clzlsz) s - %-s o < %- (23)
o. if C =20
0, = 13 (24)
T - o if 013 <0
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A . -1 - e .TL 25
g = sin (.021/82) R 7 B3 (25)
B if C < 0
0, =\ 31 (26)
T - B if C31 >0
while, if lcll‘ =1, one may let -
0if Cc., =1
0, =i il 27)
T if Cll = -1
é sin-l(—c ) -~ 1 L 0o L 1 (28)
@ 23} * T 2SS
a ifcC.,2 0
0, = 22 (29)
T - o if sz < 0
= 30
0, 0 (30)

Finally, if the successive rotations are a b, rotation of amount

61 , a 22 rotation of amount 62, and again a 21 rotation, but

this time of amount 93 , then

c, $,84 $,Cq
C= 818, =81Cy8, + caCy =81CoCy = 848y (31)
L.".c‘:lsz clczs3 + c3s1 clczc3 - s3sl
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while, 1f |c | =1

)

>

l 2

one can use

p———
(=
b
[}
I
=

=
o
h
(@]
i
i
'—l
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The matrices in Eqs. (1) and (11) are intimately related to each
other: Either one may be obtained from the other by replacing ei with
—Gi (i =1,2,3) and transposing. The matrices in Eqs. (21) and (31)
are related similarly. These facts have the following physical signifi-
cance, as may be verified by using Eq. (1.6.4): If B is subjected
successively to an 2, an 3, and an’ 2
62 s and 63 s respectively, then .B can be brought back into its

rotation of amount 61 s

original orientation in A by next subjecting B to successive fhl s
-b, » and ﬁhs rotations of amounts 61 . 62 » and 63 , Trespect-

ively. Similarly, employing only four unit vectors, one can subject B
-6

to successive rotations characterized by 6 b, ,

121 0 %22 0 %33 0 O
—9292, and —6321 without producing any ultimate change in the orient-
ation of B in A . Furthermore, it does not matter whether the ro-
tations involving unit vectors fixed in A are preceded or followed
by those involving unit vectors fixed in B ; that is, the sequences
of successive rotations represented by elg s 6292 s 6393 s -6131 s
058y » = 333 and by 6;by , O5by , O5by , =6;3; , 0,3, , 653
also have no net effect on the orientation of B din A .

To indicate which set of three angles one is using, one can speak
of '"space-three-vector angles" in comnection with Egs. (1) - (10),
"body~-three-vector angles" for Egqs. (11) - (20), "space-two-vector
angles" for Egs. (21) - (30), and "body-two-vector angles" for Egs.
(31) - (40); and this terminology remains meaningful even when the
angles and unit vectors employed.are denoted by symbols other than

those used in Egqs. (1) - (40). Moreover, once one has identified three

angles in this way, one can always find appropriate replacements for
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Eqs. (11), (21), (31), or (41) by direct use of these equatioms.
Suppose, for example, that’ g_, Yys 2 and & , n, r are dextral
sets of orthogonal unit vectors fiied in a reference frame A and in
a rigid body B , respectively; that x =%, y=n, and z =70
initially ; that B is subjected, successively, to a z rotation of
amoun£ Y, a y rotation of amount B , and an x rotation of

amount o ; and that it is required to find the elements Lij (i,j = 1,2,3)

of the matrix L such that, subsequent to the last rotation,
lEnzl=[xyzltL

Then, recognizing o , B , and Y as space-three-vector angles, one

can introduce a, , , and 6 (i=1,2,3) as

bt —i i
a 4 Z a 4 a 4 _
& T2, a =X 23 X
A A 4 _
bl =L EQ =N 23 =-8
and
A 4 a_
61 =y, 62 B, 93 0.

in which case the given sequence of rotation is represented by elg s

693y » and 0435 3 and Li can then be found by referring to Eq. (1)

3

to express the scalar product associated with L in terms of o, B8,

i3

and y - For instance,
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(1.2.1)

cos v sin B sin & + cos o sin vy

Derivations: To establish the validity of Eq. (1), one may use

ACB , BCB , and BCB

Eq. (1.6.15), forming with the aid of Eq.

(1.2.35) and Eqs. (1.2.23) - (1.2.31). Specifically, to deal with the

2 rotation, let
1 0 0 ]
ACB = 0 ¢y -5 (a)
(1.2.35)
0 8, ¢y
Next, to construct a matrix BCB that characterizes the a, rotation,
let Ay and Sv denote row matrices whose elements are 2, "2

(i=1,2,3) and a, * E& (i =1,2,3) , respectively. Then

A

v =[010] (b)
By = ANAP - 0 ~s, ] (c)
(1.2.9) (a,b)
and, from Eqs. (1.2.23) - (1.2.31), with Al =0, AZ =cy l3 = -8 ,
and 0 = 62 .
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s €2 5152 €152
BB _ 2, _ _
¢ = -85, 1+ 81 (cz 1) slcl(c2 1) (d)
2
L.—cls2 slcl(c2 -1) 1+ ¢y (c2 - l{J

=

A matrix ACB associated with a simple rotation that is equivalent

to the first two rotations is now given by

A
- o ) 1% €152,
ACB = ACB BCB = 0 cl -Sl ' (e)
(1.6.4) (a,d) |
) $1%, clczi

and, to resolve into components required for the construction of a

matrix BCB s

23

one may use Eq. (1.2.9) to obtain

[0o1] 2% =

o [—52 s;¢, clc2]

after which Egs. (1.2.23) - (1.2.31) yield

2 2 ]

8y teycq

o
&

cz[cls3+slsz(l-c3)]

-c2I8183+c182(l-c3)]

2 2 2 2

c3(1--s1 c, )+s1 c,

2
—szs3+slc1c2 )l—c3)

cz[sls3—clsz(l-c3)]

s.s.+s c,c 2(1-c3)

23717172
2 2 2
1—(s2 +sl ¢y )(1—c3)

and substitution from Eqs. (a), (d), and (f) into Eq. (1.6.15) leads

directly to Eq. (1).

Eq. (11) may be derived by using Eq. (1.6.15) with
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i 0 0
ACB = 0 cy -5,
(_102035)
I 0 51 ¢y
_ c2 0 32
BB o 0 1 0
(1.2.36)
-8, 0 c
| 2 2]
and
_ cgy =S4 0
BCB = s3 c3 0
(1.2.37)
0 0 1 _1

Egs. (2) - (10) and (12) - (20) are immediate consequences of Eq. (1)

and Eq. (11), respectively; and Eqs. (21) - (40) can be generated by

procedures similar to those employed in the derivation of Eqs. (1) - (20).
Example: If unit vectors 2a, , a, a, and b, , 22 s ES are

introduced as shown in Fig. 1.7.2, and the angles ¢ , © , and ¥

shown in Fig. 1.7.1 are re-named 61 R 62 s and 6, respectively,

3
1° 92 , and 63 are body-two-vector angles such that Egs. (31)

then 6
- (40) can be used to discuss motions of B in A . However, as will
be seen later, it is undesirable to use these angles when dealing with
motions during which the rotor axis becomes coincident, or even nearly
coincident, with the outer gimbal axis. (Coincidence of these two axes

is referred to as "gimbal lock".) Therefore, it may be convenient to

employ in the course of one analysis two modes of description of the
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orientation of B in A , switching from one to the other whenever 62

acquires a value lying in a previously designated range. The following
sort of question can then arise: If ¢1 R ¢2 » and ¢3 are the space-

three-vector angles associated with 2 > 3 5 a, and b, , b, , EB s

what are the values of these angles corresponding to 61 = 30° , 62 = 45° ,

= L]
63 ' 60°7
Inspection of Eqs. (2) - (6) shows that the elements of C required

c c c

for the evaluation of ¢1 s ¢2 , and ¢3 are. C 32 33 * 21 *

31°

and C,;;- From Eq. (31),

Hence

6, = sin 1(0.613) = 37.8°
(2)

& = sin 1(0.780/0.791) = 80.0°
3)

~75=
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¢1 100.0

%)

B = 26.5°
G)

¢ = 26.5°
3 (6)
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1.8 Small rotations

When a simple rotation (see Sec. 1.1) is small in the sense that
second and higher powers of 6 play a negligible role in an analysis
involving the rotation, a number of the relationships discussed here-
tofore can be replaced with simpler ones. TFor example, Eqs. (1.1.1) and
(1.1.2) yield respectively

b=a-ax 6 @
and

C=1U-=1Ux\8 (2)

while Eqs. (1.3.1), (1.3.3) and (1.4.1) give way to

=1
£=5 A8 3)
€, = 1 %)
and
=1
_p.."z.__e &)

which shows that, to the order of approximation under consideration,
the Rodrigues vector is indistinguishable from the Euler vector.
As will be seen presently, analytical descriptions of small rota-

tions frequently involve skew-symmetric matrices. In dealing with these,

-77-



1.8
it is convenient to. establish the notational convention that the symbol
obtained by placing a tilde over a letter, say gq , denotes a skew-
symmetric matrix whose off-diagonal elements have values denoted by

iqi (i =1,2,3) , these elements being arranged as follows:

0 ~43 42
q = q3 - 0 —ql (6)
-qz ql 0

Using this convention, one can express the results obtained by neglect-

ing second and higher powers of 6 in Egs. (1.2.23) - (1.2.31) as
C=1+ X6 (7
Similarly, Eqs. (1.3.6) - (1.3.14) yield

C=1U+ 2 (8)

Considering two successive small rotations, suppose that ACB

and ibB are direction cosine matrices characterizing the first and
second such rotation as in Sec. 1.6. Then, instead of using Eq. (1.6.4),
one can express the direction cosine matrix ACB associated with a single
equivalent small rotation as

ACB‘= U+ (ACB + BCB - 2U) (9)
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Similarly, for three small rotations Eq. (1.6.15) leads to

AcB =1 +~CfxcB + C + BCB'-.3ui (10)

Rodrigues vectors §g§ s '33? s and ég? associated respect-

ively with a first, a second, and an equivalent single small rotation

satisfy the equation

= E. + g 1 (11)

Both the relationship and Eq. (9) show that the final orientation of
B in A 1is independent of the order in which two small successive
rotations are performed.

Finally when 6 62 , and 6, in Eqs. (1.7.1) - (1.7.40) are

1° 3
small in the sense that terms of second or higher degree in these
quantities are negligible, then Eqs. (1.7.1) and (1.7.11) each yield

(see Eq. (6) for the meaning of ‘5)
C=U+90 (12)
showing that it is immaterial whether one uses space~three-vector

angles or body-three~vector angles under these circumstances. The

relationship corresponding to Eq. (12) for two-vector angles, namely

0 0 92
c = U+ 0 0 —(63 + 61) (13)
1.7.21)
‘—6 (63 + 91) 0 |
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is less useful because this equation cannot be solved uniquely for 91

and 93 as functions of Cij (i,j = 1,2,3).

Derivations: Eq. (1) follows from Eq. (1.1.1) when sin 6 is re-
placed with 6 and cos 6 with unity. The same substitution in Eq.
(1.1.2) leads to Eq. (2). Egs. (3) and (4) are obtained by replacing
sin (Q/Z). with 6/2 and cos (8/2) with unity in Eqs. (1.3.1) and
(1.3.3), and Eq. (5) follows from Eq.-(1.4.1l) when tan (6/2) is re-

placed with 6/2.
Eq. (7) follows directly from Eqs. (1.2.23) - (1.2.31), and Eq.

(8) results from dropping terms of second degree in e, » and/or

€1 %2

€4 when forming C in accordance with Eq. (1.3.6) - (1.3.14), which

ij
is justified in view of Egs. (3) and (1.3.2).

To establish the validity of Eq. (9) one may proceed as follows:

Using Eq. (7), one can express the matrices ACB BCB

and introduced

in Sec. 1.6 as

B = v+ To
and
c® = U+ 00

where 6 and ¢ are respectively the radian measures of the first
and of the second small rotation, and ‘X and 'E characterize the
associated axes of rotation. Substituting into Eq. (1.6.4), and

dropping the product Rﬂb¢ ,» oOne then obtains
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= U + A0 + 1o

(@]
|

U+ (U + %6 +U+np - 20)

U+ (ACB+ CB-ZU)

A similar procedure leads to Eq. (10).

Finally, Eq. (11) may be obtained by using Eq. (5) in conjunction
with Eq. (1.6.5), and Egs. (12) and (13) result from linearizing in
ei (i=1,2,3) in Egs. (1.7.11) and (1.7.21), respectively, and using
the convention established in Eq. (6).

Example: 1In Fig. 1.8.1, a1 s 3y and ag form a dextral set
of orthogonal unit vectors, with 2 and 2, parallel to edges of a
rectangular plate B 3 and X and Y designate lines perpendicular
to a; and 2y > respectively. When B is subjected, successively,
to a rotation of amount 0.0l rad. about X and a rotation of amount
0.02 rad. about Y , the sense of each rotation being that indicated
in the sketch, point P traverses a distance d . This distance is to
be determined on the assumption that the two rotations can be regarded
as small,

If a designates the position vector of point P relative to
point O before the rotations are performed, and b the rotation

vector of P vrelative to O subsequent to the second rotation, then

d=|p- a (2)

with
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=3
A
0.01 rad \ 45°
0.02 rad
\ }\
A —-xX
D2
30°
a
=~ A
-1 4T,
Figure 1.8.1
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a=1L(3a +4a)) (b)

and

b = a-ax)e {e)
)

where A and © are respectively a unit vector and the radian measure

of an angle associated with a single rotation that is equivalent to the

two given rotations. To determine the product A6 , let p be the

Rodrigues vector for this equivalent rotation, in which case

A i) (d)
(5)

and refer to Eq. (11) to express p as

0.01 0.02
p=p +tp = —S=A +t—5=1 (e)
=ty (5) 2 = 2 —y

where Ax and A are unit vectors directed as shown in Fig. 1.8.1;

that is,
=t (o +a) (£)
— /2“2 3
and
A =1 (fla, + a.) (2)
Ly T2 VR T 23 &
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then
A8 = 0.01x_ + 0.02)
(d-e) -y
0.01
= == [/éa, +a, + (1 + /2)a,] (h)
£,8) 2 + ? -
' P_ - _a_ = —E X (.)Le)
(c)
= 0.0y 04 /5)21 +31 + Vf)gz + (46 - 3)a,lL
(b,h) V2 . B
and
L
1601+ /)2 + 0@+ )2+ -]
4 ( - ) L[ 5536 ] = 0.098L
a,i
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1.9 Screw Motion

If Pl and P2 are points fixed in a reference frame A , and a

point P is moved from P1 to P2 » then P 1is said to experience

a displacement in A , and the position vector of P2 relative to

P1 is called a displacement vector of P in A..

When points of a rigid body B experience displacements in a
reference frame A , one speaks of a displacement of B in A ; and
a displacement of B in A 1is called a translation of B in A if
the displacement vectors of all points of B in A are equal to each
other.

Every displacement of a rigid body B in a reference frame A
can be produced by subjecting B successively to a translation in
which a basepoint P of B , chosen arbitrarily, is brought from its
original to its terminal position, and a simple rotation (see Sec. 1.1)
during which P remains fixed in A ., The Rodrigues vector (see Sec. 1.4)
for the simple rotation is independent of the choice of basepoint, whereas
the displacement vector of the basepoint depends on this choice. When
the displacement vector of the basepoint is parallel to the Rodrigues

vector for the rotation, the displacement under consideration is said

to be produced by means of a screw motion.

Every displacement of a rigid body B in a reference frame A
can be produced by means of a screw motion. In other words, one can
always find a basepoint whose displacement vector is parallel to the
Rodrigues vector for the simple rotation associated with a displacement
of B in A . 1In fact, there exist infinitely many such basepoints,

all lying on a straight line that is parallel to the Rodigues vector
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and bears the name screw axis; and the displacement vectors of all
points of B 1lying on the screw axis are equal to each other and
can, therefore, be characterized by a single vector, called the
screw translation vector. Moreover, the magnitude of the screw trans-
lation vector is either smaller than or equal to the magnitude of the
displacement vector of any basepoint not lying on the screw axis.

If § 4is the displacement vector of an arbitrary basepoint P ,
p 1is the Rodrigues vector for the rotation associated with a displace-

*
ment of B in A, and P is a point of B 1lying on the screw axis

% %
(see Fig. 1.9.1), then the position vector a of P relative to

P prior to the displacement of B in A satisfies the equation

px8&+(pxdxp 1
ax - 5 T oup )
2p

%
where , depends on the choice of P ; and the screw translation

*
vector § is given by

p 8 (2)
K m T e
8 2 L4

*
Derivation: If both P and P are points of B selected
* *
arbitrarily, and a is the position vector of P relative to P
*
prior to the displacement of B in A , while b is the position
*

vector of P relative to P subsequent to this displacement, then

* %
the displacement vector § of P can be expressed as (see Fig. 1.9.1)
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//,. screw axis

~\._.,_ e

B prior to

displacement B subsequent to

displacement

Figure 1.9.1
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* % *
+b -a (a)

where § is the displacement vector of P ; and

* * %* *
b -a = px(a +b) (b)
(1.4.5) —
so that
%* %* %*
5 = 8+px(a +b) (c)
(a;b) -
* *
Hence, 1if P is to be chosen such that § be parallel to p , in

* *

which case p x § is equalto zero, then a must satisfy the equation

% *
pX8+px[px(a +b)] = 0 (d)
- - - = (c)
or, equivalently,
* % 2 % %
pxbtp.(a *+b)p-p(a +b) =0 (e)
so that
* *
% % P X8 p - (a2 +b)
a tbh = 5Tt T ) P ©
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and

* 5 P xs -8
(C,f) - E p

in agreement with Eq. (2). As for E&. (1), one may solve the equation

* * pxs
b -a = px 2
(b,£f) B

*
for b , substitute the result into Eq. (f), obtaining

*
* P xd+t(p x8) xp p.a
a = — + =
a 2 2
20 0

~—~

*
and then simply define |, as p . a p/pz. Moreover, this equation

shows that the locus of basepoints whose displacement vectors are
parallel to p is a straight line parallel to p .

The contention that the magnitude of the screw translation vector
is either smaller than or equal to the magnitude of the displacement

vector of any point not lying on the screw axis is based on the obser-

vation that

* p -8 p-&
S B
(2) [ it

-89-



1

BRI

Example: The Example in Sec. 1.3 dealt with a displacement of the
triangle ABC shown in Fig. 1.9.2. The displacement in question
was one that could be produced by performing a translation of the
triangle during which point A is brought to A' , and following
this with a rotation during which point A remains fixed at A' ;
and the Euler vector ¢ and Euler parameter €y for the rotation

were found to be

and

where 2y 5 8y and a; are unit vectors directed as shown in Fig.
1.9.2, To determine how the triangle can be brought into the same
ultimate position by means of a screw motion, form p by reference

to Eqs. (l.4.2) and (1l.4.3), obtaining
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Figure 1.9.2
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Next, let § denote the displacement vector of point A (see Fig.

1.9.2); that is let

Then

P x 8= 2L(a; +ay)

(p x ) xp = 2L(g; + 23, - 25)
* *
and the position vector a of any point P on the screw axis

relative to point A prior to the displacement of the triangle is

given by

2L + + 2L + 2 -
o - (a; + a5) (2; + 23y - a3) .o
(1) (2)(3) -

.o
= 3 (g ray) te

%
Hence, if |, is arbitrarily taken equal to zero, then P 1is situated as

shown in Fig. 1.9.3 when the triangle is in its original position, and the
screw axis, being parallel to p , appears as indicated. Furthermore,

*
the screw translation vector § 1is given by
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screw axis

Figure 1.9,3
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* L(z; - 2, - a3) . (a; +a, - 3a3)

(2, - 3y - 23

while the amount @ of the rotation associated with the displacement
of the triangle, found in the Example in Sec. 1.3, is given by

B = —%E rad

Hence, to bring the triangle into the desired position, one may proceed
as follows: Perform a translation through a distance 451/3 s, as
indicated in Fig. 1.9.4, and follow this with a rotation of amount

2r1/3 rad. about the screw axis, choosing the sense of the rotation

as shown in Fig. 1.9.4.
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crew axis

\

Figure_ 1.9.4
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1.10 Angular velocity matrix -

If .and” b, , b, , b, are two dextral sets of

-2 3

orthogonal unit vectors fixed respectively in two reference frames or

2, & 24

rigid bodies A and B which are moving relative to each other, then
the direction cosine matrix C and its elements Cij (i,j = 1,2,3) ,
defined in Sec. 1.2, are functions of time t . The time derivative
of C', denoted by C and defined in terms of the time derivatives

Cij of Cij (i, = 1,2,3) as

Gy Ci2 C13w
» _A_ ® 2 e
C=1Cy €22 Ca3

LC31 C32 C33

can be expressed as the product of C and a skew-symmetric matrix ©
called an angular velocity matrix for B in A and defined as
sicte (2)
In other words, with w defined as in Eq. (2),
¢=cCo (3)

If functions wl(t) , wz(t) , and m3(t) are introduced in
accordance with the notational convention established in Eq. (1.8.6),

that is by expressing ® as
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0 —w3 w2
w=" u, 0 ~uy (4)

-0 w 0

| 2 1 i
theg Wy s Wy s and wy are given by

wy = Cy3Cyy + CygCyy + Cy4C4, (5)
Wy = Cp3Cyg + C39C34 + C14Cy5 (6)
wg = C39Cq7 + C19Cq3 * CypCyy 7

These equations can be expressed more concisely after defining “ij as

é% (1,5 = 1,2,3) (8)

T ek Cige ¥ D)

where Eijk is given by Eq. (1.2.32). (The quantity nijk is equal to
unity when the subscripts appear in cyclic order; otherwise it is equal
to zero.) Using the summation convention for repeated subscripts, one

ean then replace Eqs. (5) - (7) with
=1,2,3) (9)

w3 = Nenliglin ¢

Similarly, Eqs. (3) can be expressed as
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cij = Eghicigwh- (i,j = 1,2,3) (10)

Eqs. (10) are knowm as Poisson's kinematical equatioms.

Derivations: Pre-multiplication of w with C gives

Cw = ccré

- &
(2) (1.2.16)

in agreement with Eq. (3).

To see that CT ¢ is skew-symmetric, note that

I
[
a
+
(@
Cle

I T +cf ¢ =

—_— = 0

=9 T
T dt CRRY) dt

(1.;.17)

Eqs. (5) - (7) follow from Egqs. (2) and (4), that is, from

0 ~Wg Wy 13 21 Ca1 1) %1 Ci9 Cy3
) 0 —wp 1= 16, 22 Cial|Ca Ca9 Cs9
|2 ®y 0 C13 23 Ci3{tCa C3p C33}

Example: The quantities Wy s Wy s and wy can be expressed in

a simple and revealing form when a body B performs a motion of simple

rotation (see Sec. 1.1) in a reference frame A . For, letting 6 and
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li (i = 1,2,3) have the same meaning as in Secs. 1.1 and 1.2, and

substituting from Eqs. (1.2.23) - (1.2.31) into Eq. (5), one obtains

w, = [AZ sin 8 + A3A1 (1 - cos 6)](.—7\3 cos 6 + A ), sin 8)8

172
2 2 .
- [-Al sin 8 + A2A3 (1L - cos 6)](x3 + xl ) sin B8 6
+ [1 - (Alz + Azz)(1 - cos 9)](A1 cos 6 + A2l3 sin e)é
2 2 2
[Al (Al + Az + A3 )
2 2 2 . . H
+ (1 - Al - Az - A3 )(>\l cos 6 + 12A3 sin 6 - A2A3 sin 6 cos 6)]8
which, since
2 2 2
Al + AZ + AS = ]
reduces to
wy = Ale (a)
Similarly,
wy = Aze (b)
and
Wy = A39 (c)
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1.11 Angular velocity vector

The vector g defined as

s

w = wBy +owphy + gk (1)

where Wy and Ei (i = 1,2,3) have’the same meaning as in Sec. 1.10,

is called the angular velocity of B in (or relative to) A . At

times it is convenient to use the more elaborate symbol AQ? in place

of w . The symbol F@A then denotes the angular velocity of A in

B , and

w = - W (2)

If the first time-derivative of b, 1in reference frame A is

denoted by b; , that is, Ei is defined as

= 2 S b)) (=129 (3)
= a,. &, -« 2 1L = 1,4,

where the summation comnvention for repeated subscripts is used and

2 > 3y, 34 form a dextral set of orthogonal unit vectors fixed in

A, then g can be expressed as

@ = b, b, .b,+b, by,.b, +b, b, . b (4)

When the motion of B in A 1is one of simple rotation (see Sec.
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1.1), the angular velocity of B in A becomes

w=6)r (5)
where @ and ) have the same meaning as in Sec. 1l.l.
One of the most useful relationships involving angular velocity
is that between the first time-derivatives of a vector v in two
reference frames A and B ., If these derivatives are denoted by
Adg de |
T and - that is,
Ad_y_ A 4
T & al- gy (6)
and
Bd! A d
& - alr- by 0
then this relationship assumes the form
A B
dv dy AB (8)
— = + 2 XY
dt dt

Applied to a vector B fixed in B , Eq. (8) gives
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A@E

dt

- Ag? B (2

X

In view of this result one may regard the angular velocity of B in

A as ‘an "operator" which, when operating on any vector fixed in B ,

produces the time~derivative of that vector in A .

Derivatives:

can be expressed

Consequently,

and, expressing

one finds that

Similarly,

For i =2 , the scalar product apearing in Eq. (3)
as
a.. b = C.
1772 12y $2
By = 21013 ¥ 2350yp * 2505,
3
by as
b = a,C., +a,C,, + a,C
3 (1.2.1) 1713 2723 3733
b, . by = Cy2Cro + CCo + ConC =
2 3 13712 23722 33732 (1.10.5) 1
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and

Substitu;ing into Eq. (1), one thus arrives at Eq. (4).

When the motion of B in A 1is one of simple rotation, Egs.

(a) - (c) of the Example in Sec. 1.10 may be used to express the angular

velocity of B in A as

@ 7y Oy ¥ Ay ¥ 2shy) 8

a ; 22) Q . 2121'+ A - 2222 A 2323) 0 =28
in agreement with Eq. (5) .

To establish the validity of Eq. (8), let Abi s Bvi s Vv , and
v have the same meaning as in Sec. 1.2.

Then, from Eqs. (6) and (1.2.7),

. A, A,
& Vg Ve, + Ve,

A- T
= "vlg, g, a,]

Now,
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Ay . L BTy LB, BT
(1.2.9)
and
(2, 5, 251" € [by by by)
(1.2.2)
Hence

n?
i<

[a¥
rr
]

B, T T, B »T T
vC C [El b, 23]' +7vC C [21 b, 23]

b, b, b7 + °
(1.2.17, 1.10.2)

v &' [b, b, by]"

Furthermore, from Eqs. (7) and (1.2.8)

B
B, T dy
v [by by b3l = 3¢

while it follows from Egs. (1) and (1.10.4) that

B_.T T _AB
v [hl by byl " ="wxy
Consequently
Adv de
e AwB %
dt dt =
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Finally, Eq. (2) follows from the fact that, interchanging A

and B in Eq. (8), one obtains

Bay B4y .
- @t ery

and, adding corresponding members of this equation and of Eq. (8), one

arrives at

A&g dv de_ dv AB BA
Er s wt et (e ) xy

or

This equation can be satisfied for all v only if

AB B A
w W

Example: When a point P moves on a space curve C fixed in a
reference frame A (see Fig. 1.11.1), a dextral set of orthogonal unit
vectors bl s 92 s EB can be generated by letting p be the position

vector of P relative to a point P fixed on C and defining 91 s

b, , and 93 as
A
b, = p' (a)

b & 2]p'| ®
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Figure 1.11.1
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23 é P_' % .E"MR"I (C)

where primes denote differentation in A with respect to the arc

length displacement s of P relative to P, - The vector b, is

called a vector tangent, hﬂ the vector principal normal, and 23 a
vector binormal of C at P ; and-the derivatives of b, , EQ , and
23 with respect to s are given by the Serret-Frénet formulas
| -
b,' = b,/o @
' = e
by = ~by/p + 2b, (e)
' R e
b, Ab, (£)
where p and A , defined as
A "
p = 1/1p' (g)
and
A é 0221 . .P_" % Rll' (h)

are called the principal radius of curvature of C at P and the torsion

of C at P .

If B designates a reference frame in which b, , b, , and 23

are fixed, the angular velocity w of B in A can be expressed in

terms of 21 s §2 ,.93 s P s A, and s by using Eq. (4) together with
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b, =b.'s = b,s/p
2 "= =2

to obtain

= (Ab, + b,/p)s
Sy R

(1)

3)

(k)

The term "torsion" as applied to A dis seen to be particularly appropriate

in this context.
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1.12 Angular velocity components

The expression for ® given in Eq. (1.11.1) involves three
components, each of which is parallel to a unit vector fixed in B .
At times it is necessary to express o in other ways, for example,
to.resolve it into components parallel to unit vectors fixed in A .
Whichever resolution is employed, one may wish to know what the
physical significance of any one component of w is.

In certain situations physical significance can be attributed
to angular velocity components by identifying for each component two
reference frames such that the angular velocity of one of these relative
to the other is equal to the component in question. As will be seen
later, this is the case, for example, when the angular velocity of
B in A 1is expressed as in Eq. (1.16.1). 1In general, however, it
is not a simple matter to discover the necessary reference frames.
For instance, such reference frames are not readily identifiable for
the components Aéhl and (és/p)g3 of the angular velocity found in
the Example in Sec. 1l.11. |

An essentially geometric interpretation can be given to the quan-
and o

tities ®; 5 @ appearing in Eq. (1.11.1), and thus to the

2° 3
components ‘ngi (i=1,2,3) of w, by introducing a certain space-
average value of the first time-derivative of each of three angles¥*.
Specifically, let o be a generic unit vector fixed in reference frame
A, Ei the orthogonal projection of o on a plane normal to Ei

(i=1,2,3), 6, the angle between By and 23 > 8, the angle

1

*
The authors are indebted to Professor R. Skalak of Columbia University
for this idea.
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between §2 and b1 , and 93 the angle between EB ‘and EQ s as
shown in Fig. 1.12.1. Next, letting § be a unit sphere centered at a
point 0 , and designating as P the point of S whose position vector
relative to O is parallel to ¢ (see Fig. 1.12.2), associate with P

the value of éi and define éi as

5, 2 5—1- fe do  (d=1,2,3) (1)
where dg in the area of a differential element of 8§ at P . Then
w, = 0, (i =1,2,3) (2)

Derivation: Defining ai as

e

@b, (i=1,2,3)

-1

one can express © (see Fig, 1.12,1) as

1

6, = arc tan Q12A33)

from which it follows that
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@2

D
N
wm\b

Figure 1.12.1
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&W

Now,

[N

T is given both by

&bﬂ

o,
t

=Qp By +a, by +0ay by

and by

= AB _
= = W X w X

Consequently

i = nijk.(ozj W - wj) (i=1,2,3)
(1.10.8)

and

D

_ 50 % 0y) 0y - @ @y -3y ) O

a2 +Qa

@y G4
1 2 7 P9 -

p) 2 73
a, +a
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To perform the integration indicated in Eq. (1), introduce the
angles ¢ and V¥ shown in Fig. 1.12.2, noting that @ then can be

expressed as

Q = cos ¢ 91 + sin ¢ cos V¥ 32 + sin ¢ sin ¥ 23

so that

a1=cos<b,oc,2=sin¢cosw,oz3=sin¢sin\|r
while

do = sin ¢ d¢ d¥
Consequently
. m 2w T 2w
4mr él =W f [ f sin ¢‘dﬂ d¢ - Wy f [ I cos ¢ cos ¥ dW] de
(1) '
0 o 0O O

2 ‘
[ f cos ¢ sin V¥ dWJ de¢
0

-(1)3

The first integral has the value 4w , and the remaining two integrals

are equal to zero. Hence
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Figure 1.12,2
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Similarly,

and

Example: 1In Fig, 1.12.3, B designates a cylindrical spacecraft whose
attitude motion in a reference frame A can be described as a combination
of "coning" and "spinning", the former being characterized by the angle

¢ and involving the motion of the symmetry axis of B on the surface of
a cone that is fixed in A and has a constant semi-vertex angle 6 ,
while the latter is associated with changes in the angle V¢ between two
lines which intersect on, and are perpendicular to, the symmetry axis of

B , one line being fixed in B and the other one intersecting the axis

of the cone. Under these circumstances the direction cosine matrix C

such that
[E]_ .112 23] = [?;1 2, i3] Y (a)

where 3i and Ei

Fig. 1.12.3, can be expressed as

(i = 1,2,3) are unit vectors directed as shown in

c = C, (¢ C, (6) C, (V)
(1.6.15) 1 3 1
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Figure 1.12.3
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or, after using Eqs. (1.2.35) and (1.2.37), as

ch -sBcy 8OsV
C = sf8cd cOcocy - sosy ~-cBecodsy - socy (b)

s0s¢ cOsdcy + cosy -cOsosy + cocy

where s6 and c6 denote sin & and cos O , respectively, and simi-

larly for ¢ and V¥ . Forming w Wy » and Wy in accordance with

1 H
Egqs. (1.10.5) - (1.10.7), one then obtains the following expression for

the angular velocity w of B in A :
w= (V.+ ¢c@) 91 - ¢sbec¥ EQ + ¢sOs¥ 23 (c)

A more efficient method for obtaining this result is described in Sec. 1.16.
For present purposes, what is of interest is the fact that the Ei ~compo-.
nent (L = 1,2,3) in Eq. (c) does mot have a readily apparent physical sig-

nificance, but that, when @ is re-written as

W=V by + #(cO b, + s6cé b, + s0s¢ by)

= ¥ b1 + 5 a
- =1
(a,b)
then each component has the same form as the right-hand member of Eq.
(1.11.5) and can, therefore, be regarded as the angular velocity of a
body performing a motion of simple rotation. Specifically, designating

as A1 a reference frame in which the axis of the cone and the symmetry
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axis of the cone and the symmetry axis of B are fixed, one can

observe that A1 performs a motion of simple rotation in A ;

H

moreover, that B performs such a motion in A1 ; and, finally,

that the associated angular velocities are

ol-ia
- -1
and
Ale ] & .
- ~1
Thus it appears that
) A A1 Ale
w= W o,
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1.13 Angular velocity and FEuler parameters

If 2, , 23,5 2, and b, , 22 > by are two dextral sets of
orthogonal unit vectors fixed respectively in reference frames or rigid
bodies A and B which are moving relative to each other, one can use
Egqs. (1.3.15) - (1.3.18) to associate with each instant of time Euler

parameters EysreesBy 3 and an Euler vector ¢ can then be formed by

reference to Eq. (1.3.2). In terms of £ and 84 » the angular velocity

of B in A (see Sec. 1.11) can be expressed as

e Pae
w=2e, — - g, - g %X — (L
' (4 dt 4 dt>

Conversely, if w is known as a function of time, the Euler parameters

can be found by solving the differential equations

Bda 1

——=— (gt e xuw (2)
dte 2

and

(3

#p

fl

|
Nofis
e

*
jm

Equations equivalent to Eqs. (1) - (3) can be formulated in terms

of matrices w , &, and E defined as

ne>

g Wy 0} %)

>

[el €y €5 54] (5)
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and

€ —€4 ) =21
€ € -€ €
E = 3 4 1 2 (6)
~€, € €, €4
L—el -, ~€53 €
These equations are
w = 2¢E "))
and
¢ = Lug" (8)

Derivations; Substitution from Eqs. (1.3.6) - (1.3.14) into Egs.

(1.10.6) - (1.10.8) gives

wy = Alegey + ege ) (eqey + By8y) = €38, = €35,)

+ 4(6282 - elaé)(ezsz - E484 = €18 + 8484)

+ é g, + ¢ E

2 2 e .
+ 21 - 291 - 282 )(5253 + €9€4q 154 1 4)

= 2(8184 + €yEq = €38, = 6461)

w, = 2(a2e4 + €485 = €463 = 8482)

Wy = 2(8384 + €169 = €981 = 6483)
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and these are three of the four scalar equations corresponding to

Eq. (7). The fourth is

0 = 2(8181 + Es€p + €464 + €

g,)
(7) 44

and this equation is satisfied because

4, 2 2 2 2

it (el + €, + €q

€

(NT)

e, + é e, + é £, =
171 272 373 (1.3.4)

Thus the validity of Eq. (7) is established; and Eq. (1) can be ob-

tained by noting that

w = w,b, + w b + w,b
(1.11.1) 1= 2=2 33

(;) 2[(ele4 + €x€3 = €46y = 5451)91

+ (ezs4 + eqe) - £1E5 - 8482)E2

+ €

(e3e, + €18y = €8 = £453)b3]

2[3 (e b + e b, + €,b,) - 64(al§1 + e,b

2 303 + e.b

2=2 3—3)

+

(8965 = 2350y + (E48; = E1e9)by + (5q5) = 2pey )b

Bae | Bae
2(eg; — = ¢ £ X —
.2) . dt bE - dt

Post-multiplication of both sides of Eq. (7) with ET gives

b,]

(1.

w

WwE~ = 2¢EE

Now, using Eq. (1.3.4) and referring to Eq. (6), one finds that
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Consequently

mET = Zé
in agreement with Eq. (8).
Finally,
. 1 1
g, = - = (w,e, + w,e, + W,E,) = -Sw e
by 211220 33 4 41.1,1.3.2) 2

as in Eq. (3); and

Bye

_ - €.b. + é.b, + €.b
dt (1.3.2) Y1 2 "33

_ 1 -
@) 2 [(wye, = wyeq + wgey)by

+ (wle3‘+ WyEy = au:*}&:l)l_)_2

= (uy&y = wpey = wge, b4l

The right-hand member of this equation is equal to that of Eq. (2).

Example: Suppose that the inertia ellipsoid of B for the mass center
B* of B 1is an ellipsoid of revolution whose axis of revolution is par-
allel to 93. Then, if I denotes the inertia dyadic of B for B* ,» and

if I and J are defined as
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s« b. =D ‘._I_"b (a)

o
L)
[

and

>

by * I+ by (b)
*
the angular momentum H of B in A with respect to B is given by

H = Iw;by + In,b, + Jusb (c)

-1 2 33

and the first time-derivative of H in A can be expressed as

Mg Bau
—_ = — 4+ w X H
dt (1.11.8) 9 —
(:) [le + (J - I)w2w3]§1 + [Iw2 - (J - I)wal]g2 + stys (d)

Hence, if B moves under the action of forces the sum of whose moments

%

about B is equal to zero, and if A 1is an inertial refg;ence frame, so
dH
dt

to zero, then Wy s Wy s and wy are governed by the differential

that, in accordance with the angular momentum principle, is equal

equations

w,w, =0 (e)

=0 (£)
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Wy = 0 (g)

Letting mi denote the value of wg i=1,2,3) at t =0,

and defining a constant s as

s & i~ @, (h)

one can express the general solution of Eqs. (e) - (g) as

w; = Wy cos st + Wy sin st (1)
wy = =0y sin st + w, cos st (i)
Wy = Wg (k)

and, to determine the orientation of B in A , one then can seek the

solution of the differential equations

= 1 -
€& = 3 (wle4 WyEq + m3ez)

(8)
(iik).% [(@ cos st +u, sin st)e, + (@, sin st - Eé cos st)ey + Wae,] (2)
éz = -% (wle3 + wyE, - w3el)
(8) .
(iik)%-[(ﬁi cos st + Eé sin st)e; - (w; sin st - wy cos t)e, = wgey ]l (m)

plus two more differential equations of the same form, using as initial

conditions
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€ = €, = €5 = 0, €, = 1 at t =20 (n)

which means that the unit vectors 2 s 25, and ag have been
chosen such that a; = bi (i =1,2,3) at t=20.

'Since the differential equations governing €1 3 vee 5 €y have
time-~-dependent coefficients, they cannot be solved by simple analytical
procedures. However, attacking the physical problem at hand by a
different method (see Sec. ), and defining a quantity p as
2

[w, % + w22 + @, /D%

L
2

one can show that €1 5 €y s E3s and €, are given by

€y = §i§;é25122-[ﬁi cos (st/2) + Eé sin (st/2)]

ey = §§B.§£Eigl [;ai sin (st/2) + ©, cos (st/2)]

€q = Eé(Jle) sin (pt/2) cos (st/2) + cos (pt/2) sin (st/2)
g, = 453(J/Ip) sin (pt/2) sin (st/2) + cos (pt/2) cos (st/2)

and it may be verified that these expressions do, indeed, satisfy the
differential equations governing €1 5 +++ 5 E, a8 well as the initial

conditions stated in Egs. (n).
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1.14 Angular velocity and Rodrigues parameters

If 2,5 3y, 24 and hl’ 22, 23 are two dextral sets of orthogonal

unit vectors fixed respectively in reference frames or rigid bodies A and
B which are moving relative to each other, one can use Eqs. (1.4.9) to
92 and 93;

and a Rodrigues vector p can then be formed by reference to Eq. (1.4.2).

associate with each instant of time Rodgrigues parameters pl, P

_The angular velocity of B in A (see Sec. 1.11), expressed in terms of p,

is given By

w = 3 - P X=—== (1)

Conversely, if w is known as a function of time, the Rodrigues parameters

can be found by solving the differential equation

Bdg

t

N =

(+ex u+tpp- w (2)

Equations equivalent to Eqs. (1) and (2) can be formulated in terms of

matrices w, p, and p defined as

>

[wl W, w3] (3)

0210, o gl (4)

and
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=P3 P2
A
B = Oy 0 =Py (5)
-Py Py 0

These equations are

- 23(U + p) (6)
1+ opT
and

. 1 ~ T 7
p=5w=-p+pp) N

Like its counterparts for the direction cosine matrix and for Euler param-
eters (see Eqs. (1.10.3) and (1.13.8), Eq. (7) is in general an equation
with variable coefficients. Since it is, moreover, nonlinear, one must

usually resort to numerical methods to obtain solutions.

Derivations: Using Eqs. (l1.3.1), (1.3.3), and (L.4.1), one can express

€ and €, as
2,-1/2
e=p(l+p9)
and
e, = 1+ p_z)-llz
respectively. Consequently,
B B B
de do dp
- = 2,-1/2 2.-3/2 =
= e (L ted) -e(l+pe) et T
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. 2.-3/2 L
& = - +pg) £ Tde
and
B B
,| e 2. -1 2 -2 dp
@ = e Lt o) -e+p) o3

B B
2. -2 dp dp 2. -1
tollt o) e mEmex g (1)

which is equivalent to Eq. (1).

Cross-multiplication of Eq. (1) with P yields

B
, [ 2 4o “dp
¥ x e Z\7dc X2 2 FreT@ e
1+ p
Byp , By
Se-2 gt 2 qt " 2E
1+
1 £
while dot-multiplication produces
B
w.E_ 2 —dE..
1+ o2 dt =
Consequently
B
dp
@ xpe=w-2—grtw.pp

in agreement with Eq. (2).
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The validity of Eqs. (6) and (7) may be verified by carrying out the
indicated matrix multiplications and then comparing the scalar equations
corresponding to the matrix equations with the scalar equations corresponding

to Eqs. (1) and (2).

Example: The "spin-up" problem for an axially symmetric satellite B can

be formulated most simply as follows: Taking the axis of revolution of the
inertia ellipsoid of B for the mass center B* of B parallel to b,, assuming
that B 1is subjected to the action of a system of forces whose resultant mo-
ment about B%* is equal to blhg, where M is a constant, and letting Wys Wys

and Wy have the values

Wy = Wy Wy = wg =0 (a)

at time t = 0, determine the orientation of B in an inertial reference frame
A for t > 0. (The reason for taking Wy equal to zero at t = 0 is that

the unit vectors 21 and 92 can always be chosen such that 22
t =0, in which case Wy = W b2 = 0. As for Wg this

is taken equal to zero at t = 0 because the satellite is presumed to have

is perpen-

dicular to w at

either no rotational motion or to be tumbling initially, tumbling here re-
ferring to a motion such that the angular velocity is perpendicular to the
symmetry axis.)

Letting 1 denote the inertia dyadic of B for B*, and defining I
and J as

b, L*b, =b +I-.b (b)
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and
b, *IL*b (c)

one can use the angular momentum principle to obtain the following differen-

tial equations governing Wys Woo and wg:

W =TT W3 (d)
[ = - I - J
Wy = T “3“1 (e)
. _ M
Wy =3 (£)
Since M and J are constants,
M
g = 3 t (g)
(£,a)
and_
I1-J M
f = =t w (h)
“l g I I 2
. - -I. - J M
wy = I 3% (1)
(esg)

The solution of these equatioms is facilitated by introducing a function
g as

2
E
2

np
H

[}
o
=
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Then
) = Bw (k)
i . 2
(h, 3)
) = - gw (1)
2 .. 1
(193)
or
dw
1 - .
3 @ Wy (m)
e = -w (n)
dg (1) 1
so that
—_— =
d¢2 1 (msn)
wy = C1 sin ¢ + C2 cos ¢ (p)
and
= C1 cos @ - C2 sin ¢ (q)

wz (m,p)

where C1 and C2 are constants which can be evaluated by noting that

¢ (see Eq. (j)) vanishes at t = 0. That is,

w = C (r)
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and
0 = ¢, (s)
(a,q)
Consequently
w, = w, cos @ (t)
Ly ¢t
and
w, = -w, sin o] (u)
2 1
(q)

Equations governing the Rodrigues parameters Pys Py and Py can

now be formulated by referring to Eqs. (3), (4), (5), and (7) to obtain

. - 2 -_ M
25 )_ : - =
1 = w cos ¢<1 + o, w, sin g (p;0, py) * 7t (9301 +0,) (V)

2p2

- - 2) M
wy cos g (plp2 + p3) - Wy sin ¢(1 + 02 + 3 t (0203 01) (w)

N
ke
L]

- — M 2)
- - $ . —— o
3 Wy cos @ (0301 QZ) wy sin 4 (0203 + pl) + 3 t (1 + 3 (x)
and, if 8;5 2y» and a; are chosen such that g = Ei (i =1,2,3)
at t =0, then Pys o]

2? and Py must satisfy the initial conditions

p;(0) =0 (i =1,2,3) 67

Suppose now that one wishes to study the behavior of the symmetry

axis of B, say for O E_B't < 10.0, by plotting the angle 6 between

1

this axis and the line fixed in A with which the symmetry axis coincides
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-2
initially. Once the dimensionless parameters J/I and M/Jw1 have
been specified, Pys Pg> and Py can be evaluated by integrating

Eqs. (v) - (x) numerically, and 6 is then given by

= . = _ 1 2 3
€ = arc cos (gs 23) c

33 -
(1.2.2, 1.2.3) (1.4.4) 1+ ciz + ‘E + ;5

(2)

Table 1 shows values of pl’ 02, 03 and 6 obtained in this way
for J/1 = 0.5 and M/JBlZ= 0.1, The largest value of ;it appearing
in the table is 3.0, rather than 10.0, because during integration from
3.0 to 3.5 the values of P1> Pyo and f3 became so large that the

integration could not be continued. To overcome this obstacle, Eqs. (v) -

(z) were replaced with (see Eqs. (1.13.8))

G

Zel = w; cos & €, + Wy sin ¢ 63_+

. _— -—' . -M
2€2 = w COS g ey - w Singe, t

o
m
ey

L =g - -0 M
Ze3 = wl cos ¢ e2 wl sin g €1 + 3 t e

€1(0) = €,(0) = €5(0) = 0, €,(0) = 1

and

2 2
6 = arc cos @ - Zel - 252
(1.3.14)
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Table 1
Tt Py Py Py 6(deg)
0.0 0.00 0.00 0.00 0
0.5 0.26 -0.00 0.00 29
1.0 0.55 -0.01 0.03 57
L.5 0.93 -0.04 0.06 86
2.0 1.56 -0.11 0.13 115
2.5 3.06 -0.33 0.27 143
3.0 | 16.94 -2.69 1.41 169

respectively, and a numerical integration of these equations, performed
without difficulty because -1 S_ei <1 ((1=1, «ve, 4), produced the
values listed in Table 2. These results not only permit one to plot 6

versus Blt, as has been done in Fig. 1,14.1, but they fndicate quite

clearly why the numerical solution of Eqs. (v) - (%) could not proceed

smoothly: €, changes sign between Elt =3.0 and Lt =3.5, and

again between Blt = 8.5 and Z&t = 9,0, whereas ei(i = 1,2,3) do

not change sign in these intervals. Hence 64 vanishes at two points

at which ei(i = 1,2,3) do not vanish, and since

m

o = L (1=1,2,3
i 64
(1.4.3)

the Rodrigues parameters become infinite at these two points.
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Table 2
;1t € € €4 €4 6(deg)
0.0 0.00 0.00 0.00 0.00 0
0.5 0.25 0.00 0.01 0.97 29
1.0 0.48 -0.01 0.02 0.88 57
1.5 0.68 -0.03 0.05 0.73 86
2.0 0.84 -0.06 0.07 0.54 115
2.5 0.94 | -0.10 0.08 0.31 143
3.0 0.98 -0.16 0.08 0.06 169
3.5 0.96 -0.21 0.06 -0.20 157
4.0 0.86 -0.26 0.00 -0.43 129
§ 4.5 0.71 -0.30 -0.01 -0.64 100
f 5.0 | 0.50 -0.30 -0.18 -0.79 72
5 5.5 | 0.26 -0.26 -0.30 -0.88 b4
% 6.0 0.02 -0.17 -0.41 -0.89 20
% 6.5 i -0.22 -0.04 -0.51 -0.83 26
; 7.0 f -0.42 0.13 -0.57 -0.70 52
E 7.5 g -0.55 0.33 -0.58 -0.50 80
% 8.0 ' -0.61 0.53 -0.51 -0.28 108
| 8.5 { -0.59 0.71 -0.37 -0.06 136
9.0 -0.49 0.84 -0.17 0.14 155
i 9.5 -0.33 0.90 0.09 0.28 146
§ 10.0 . -0.13 0.86 0.36 0.34 120

=136~




1.15

1.15 Indirect determination of angular velocity

When a rigid body B can be observed from a vantage point fixed
in a reference frame A, the angular velocity w of B in A can be deter-
mined by using Eq. (1.11,4). If observations permitting such a direct
evaluation of w cannot be made, it may, nevertheless, be possible to
find w. This is the case, for example, when two vectors, say p and
q, can each be observed from a vaﬁtage point fixed in A as well as from

one fixed in B, for w can then be found by using the relationship

- X -
dt dt dt dt

w= (1)
Adg BdE
de - ag) " 4
To carry out the algebraic operations indicated in this equation, one
must be able to express all vectors in a common basis. This can be
accomplished by using Eq. (1.2.9) after forming a direction cosine
matrix by reference to Eq. (1.5.3).
Derivation: From Eq. (1.11.8),

AdB BdB

o T TE@ T exek (2)
and

AdSL Bdg

ETRE R ®

F137‘



1.15

Hence

B
Adp. de. Adg dgq AdR de
ol e x| — L LT 2 | == . T
dt ~ dt dt ~ dt dt gt ) X (@x
; (b)
bap  Bap Ay Bap
S\dc T Tae) T L9 \T3e T Tac 24
bp  Bap

(2) at C Tqe ] Tl X PRcleg

AdB BdR
R

and, solving for w, one arrives at Eq. (1).

Example: Observations of two stars, P and Q, are made simul-
taneously from two space vehicles, A and B, these observations consisting
of measuring the angles ¢ and V¢ shown in Fig. 1.15.1, where O repre-
sents either a point fixed in A or a point fixed in B, R is either P or
Q, and €15 &y» &5 are orthogonal unit vectors forming a dextral set
fixed either in A or in B.

For a certain instant, the angles and their first time-derivatives
are found to have the values shown in Table 1. The angular velocity w
of B in A at that instant is to be determined.

The situation under consideration is the same as that discussed in

the Example in Sec. 1.5. Hence, if v 1is any vector and Av and Bv
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Figure 1.15.1
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Table 1

g and V in degrees, ¢ and Y in radians per second

P Q
& v | # i ¢ V| ¢ ¥
c. =a. | 90| 45 | -2 1 30] o] o |L1-AB
-1 -1 2
e, =b (15| 0] 0O -33/2 1 90 | 60 | 3nB{ o
ha B

are row matrices having v - a, and v - Ei (i = 1,2,3) as elements,
then
0 0 1
Bv = Av 0 1 0 (c)

Furthermore, if R is again defined as a unit vector directed from O

toward R (see Fig. 1.15.1), then
R =cos ¥ cos g < + cos ¥ sin ¢ ) + sin V¥ €3 (d4)

and the first time-derivative of R 1is a reference frame C in which

€12 Ep> and cg are fixed is given by

Car
—= = - (sin V cos g ¥ + cos ¥ sin g g)C.
dt (d) 1

- (sin ¥ sin g ﬁ - cos ¥ cos ¢ é)gz

+ cos ¥ ¥ [N (e)
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Consequently, letting p and g be unit vectors directed from O

toward P and Q respectively, and referring to Table 1, one can ex-

press the time-derivatives of p and g in A as

bap 5 N

— = 23, - a,+——a
dt (e) -1 2 -2 2 =3

and
A

4 = (_1__45)3
dt (e)

(£)

(g)

Next, use of Eq. (c) permits one to express these derivatives in terms

of gl, b, and b,, as indicated in lines 1 and 2 of Table 2; and

lines 3 and 4 are formed similarly. Lines 5, 6, and 7 can then be

formed by purely algebraic operations, and the scalar product appearing

in the denominator of the right-hand member of Eq. (1) is given by (see

line 2 of Table 2 in the Example in Sec. 1.5)

Ay, B
e de) Nz (1), 5v3 (NE)_ (23 L\\2
at - ac) "4 "2 \2 2 \ 2/ \2 ~2)2

Consequently

. 2 \2 "2/="2 \2 =3
- N3 _ 1\ A2
2 2/ 2

= 5b, + by rad/sec.
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Table 2

Vectors appearing in Eq. (1)

r
Line Vector ! hl 22 93
AdR 5
2 N2
1 dt ) T2 N2
A
2 4 NCRE
Tt 3-5 0 0
Byp |
2 32
> a 0 0 "2
B
dg
N3
4 P -5 0 0
A B4
5 B N2 Nz 5NZ
dt = dt 2 2 2
A B
6 B! »E 1 0 0
dt dt 2 T2
B
, %p "ap) [Pag Bag N2 (2@/__?7 - .1_> N2 <§i.5 - l)
at - Tac )\ @k T Tae 0 2 \3 2/p2\2 2
i
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1.16 Auxiliary reference frames

The angular velocity of a rigid body B in a reference frame A
(see Sec. 1,11) can be expressed in the following form involving n

auxiliary reference frames Al’ ceny Ah:

+ % (15

This relationship is particularly useful when each term in the right-
hand member represents the angular velocity of a body performing a
motion of simple rotation (see Sec. 1l.1) and can, therefore, be expressed

as in Eq. (1.11.5).

Derivation: For any vector ¢ fixed in B,

A
_5% = AwB X € (a)
dt (¢1.11,9) — ~ ~
A
1d£ A1 B
It = wxe (b)
(1.11.9)
and
A
Adc 1dc A A
- = e tulxe (©
(1.11.8)
so that
AA A, B
B
As)_xs = lesﬁ 19 x e (d)
(a,b,c)
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or, since this equation is satisfied for every ¢ fixed in B,

AA A B
AQF = 1 + 1g ()

which shows that Eq. (1) is valid for n = 1, Proceeding similarly,

one can verify that

w = w4+ Tw (£)

which is Eq. (1) for n = 2, The validity of Eq. (1) for any value of
n can thus be established by applying this procedure a sufficient number

of times.

Example: In Fig. 1.16.1, o, g, and V¥ designate angles used to
describe the orientation of a rigid cone B in a reference frame A. These
angles are formed by lines described as follows: L1 and L2 are per-
pendicular to each other and fixed in A; L3 is the axis of symmetry of
B; L4 is perpendicular to L2 and intersects L2 and L3; L5 is per-
pendicular to L3 and fixed in B; and L7 is perpendicular to L2
and L4. To find the angular velocity of B in A, one can designate
as A1 a reference frame in which L2, L4 and L7 are fixed, and as

A2 a reference frame in which L3, LS’ and L are fixed, observing

7

~144-



1.16

Figure 1,16.1
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that L2 is then fixed both in A and Al’ L7 is fixed both in A1

and L, is fixed both in A, and B, so that, in accordance

2° 3 2
with Eq. (1.11.5),

and A

oty wlein, =i

where Ays Ags and L7 are unit vectors directed as shown in Fig. 1.16.1.

It then follows immediately that

A B — ® . M
b= QLQ + 61y + wls

(L
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1.17 Angular velocity and orientation angles

When the orientation of a rigid body B in a reference frame A

is described by specifying the time dependence of orientation angles

91, f,, and 93 (see Sec. 1.,7), the angular velocity of B in A

(see Sec. 1.11) can be found by using the relationship

[0, w, w,] = [él éz ;1 M (1)

where M is a 3 X 3 matrix whose elements are functions of 91, 92,
and 63. Conversely, if Wys Wos and wy are known as functions of
time, then 91, 62, and 93 can be evaluated by solving the differen-

tial equations

L) . — —1
[61 9 93] = [wl wy w3] M (2)
For space-three-vector angles, the matrices M and M-l are
(1 0 o |
M=]0 ¢ -8 (3)
["%2 %1% %1%z
and
c, 0 0 W
-1 _ 1 (4)
M~ = , SISZ 1€, s1 1
flsz -8,¢, c1d
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For body-three~vector angles,

i - b
2% €2°3 %3
M= s, Cq 0 (5)
0 0 1
and
€3 %3 %3¢
-1_ 1.
US| %% %28 (6)
| O 0 ¢y
For space-two-vector angles,
(1 0 0
M=1]0 ¢y -5, (7)
| %2 %152 €1%2 |
and
- B
s2 0 0
-1 1
M = s, =8¢, €18, S1 (8)
-c.C -s.§ c
| "€1%2 172 1]

Finally, for body-two-vector angles,
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2 273 273
M=1]0 cq -s, (9
b1 0 U
and
K 0 s, ]
M-‘1 = £Z Sy S,Cq ~C,5, (10)
L-c3 -8,8, -c2c3d

When ¢, vanishes, M as given by Eq. (3) or by Eq. (5) is a

singular matrix, and M‘-l is thus undefined. Hence, given Wys Wys
and wy one cannot use Eq. (2) to determine él’ éz, and é3 if

e] and 93 are three-vector angles and cy = 0. Similarly, if

1’ 92’

el’ 92’

matrix when 8y is equal to zero.

and 93 are two-vector angles, Eq. (2) involves an undefined
When the angles and unit vectors employed in an analysis are de-
noted by symbols other than those used in connection with Eqgs. (1) -
(10), appropriate replacements for these equations can be obtained
directly from Eqs. (1) - (10) whenever the angles have been identified
as regards type, that is, as being space-three-vector angles, body-
three-vector angles, etc. Suppose, for example, that in the course of
an analysis involving the cone shown in Fig., 1,16.1, and previously
considered in the Example in Sec. 1.16, unit vectors Ex’ Ey and Ez’
fixed in B as shown in Fig. 1.17.1, have been introduced, and it is

now desired to find w , w , and w_, defined as
x> Ty -z
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Figure 1,17.1
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>
>
>

W

w
X -

s W

b w *
- y -

b
2z

where w denotes the angular velocity of B in A. This can be done
easily by regarding ¢, 6, and V¥ as body-two-vector angles, that is,

by introducing unit vectors 81> 25, 34 as shown in Fig. 1.17.1, de-

fining by» b,, and b, as
and taking

91 = B, 92 = ‘63 93 = -W

For it then follows immediately from Eqs. (1) and (9) that

(cos 6 sin @ sin V¥ -sin 6 cos w1
[wy w, mx] = [p -8 ¥l 0 cos V¥ sin V¥
L 1 0 0

so that

-3 sin 6 cos V - 6 sin ¥

w=
®
= % cos 6 - |
oy % ¥
w, = % sin 6 sin ¥ - 0 cos ¥
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Derivations: From Eqs. (1.10.5) and (1.7.1)
w, = (¢;8,6, + 85,8.) 4 (s.s,c, - 8,¢C,)
1 17273 371 dt 17273 371
+ (c.s8,5, - ¢.8.) 4 (s.s.5, +c.c,)
17273 371" dt 1273 371

d
+oepe, g (8409)

Similarly, from Egqs. (1.10.6) and (1.7.1)
Wy T G5y t 35,5
and from Eqs. (1.10.7) and (1.7.1)

wy = = By, + bye g0,
These three equations are the three scalar equations corresponding to
Eq. (1) when M is given by Eq. (3).

Eq. (2) follows from Eq. (1) and from the definition of the in-
verse of a matrix; and the validity of Eq. (4) may be established by
noting that the product of the right-hand members of Eqs. (3) and (4)
is equal to U, the unit matrix, Proceeding similarly, but using
Eq. (1.7.11), (1.7.21), or (L.7.31) in place of Eq. (1.7.1), and Egs.
(5) and (6), Egqs. (7) and (8), or Egs. (9) and (10) in place of Egs.

(3) and (4), one can demonstrate the validity of Egs. (5) - (10).

Example: Fig. 1.17.2 shows the gyroscopic system previously dis-

cussed in Sec., 1.7, where it was mentioned that one may wish to employ
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space-three~vector angles ?q Bys and B3, as well as the body-two-
vector angles 61, 62, and 93 shown in Fig. 1.17.2, when analyzing
motions during which 92 becomes small or equal to zero., Given Oi
and éi (i =1,2,3), one must then be able to evaluate g, and éi
(L = 1,2,3).

Suppose that, as in the Example in Sec. 1.7, 8

1= 30°, 6, = 45°,

and 63 = 60° at a certain instant and that, furthermore 9, = 1.00,

1
éz = 2.00, é3 = 3.00 rad/sec. What are the value of él’ éz, and 53
at this instant?

From Egs. (2) and (4),

[cos %, 0 0
: by @5 w3
[¢l ¢2 ¢3] = ——ca—s——¢—2—-—- sSin ¢l sin ¢2 cos ¢1 cos ¢2 sin ¢1
| cos gy sin 2 -sin ¢1 cos ¢2 cos ¢1d

or, using the values of 81 and ) found previously,

[ 0.791 0 0o
Jw, w, w
o e e . 1 T2 M9 )
[¢1 2, ¢3] =571 0.603 0.138 0.985
| -0.107  -0.780  -0.174

Now, from Eqs. (1) and (9),
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2 sin 62 sin 93 sin 92

[w1 w, Wil = [91 6, 8,1 0 cos 6, -sin
L 1 0
[0.707 0,612 0.354
= [1.00 2.00 3.00] 0 0.500 -0,.866
! 0 0
= [3.707 1.612 -1.378]
Hence

[ 0.791 0

- o o+ . _ [3.707 1,612 -1.378]
(6, 8, #31 0.791

0.603 -0.138

| -0.107  -0.780

[5.12 1.08 2.41]
and

¢, = 5.12, By = 1.08, ¢3 = 2,41 rad/sec.

-155-

cos 63

O3

0.985

y

-0.174 |



1.18

1.18 Slow, small rotational motions

If 2,5 8,5 24 and 21, 22, 93 are two dextral sets of or-
thogonal unit vectors fixed respectively in reference frames or rigid
bodies A and B which are moving relative to each other, one can
use Eqs. (1.3.18) and (1.3.20) to associate with each instant of time
an angle 6, and the motion is called a slow, small rotational motion
when all terms of second or higher degree in 6 and 8 play a negli-
gible role in an analysis of the motion., Under these circumstances, a
number of the relationships discussed previously can be replaced with
simpler ones, Specifically, in place of Egs. (1.13.1) and (1.13.3)

one may then use

By
w=2-—r (L)
and
€ = 1 (2)

Eqs. (1.14.1) and (1.14.2) can be replaced with

Bio

w =2 T (3)

and, if 61, ] and 63 are chosen such that terms of second or

2’
higher degree in Gi and/or bj(i,j = 1,2,3) are negligible, then

Eq. (1.7.1) together with Eq. (1.17.3) or Eq. (l.17.5) leads to

[wl w, w3] = [61 2 93] 4)
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which shows that it does not matter whether one uses space-three-
vector angles or body-three-vector angles when dealing with small,

slow rotational motions.

Derivations: From Eqs. (1.8.3) and (1.8.4)

1
[
and
€ =
4 1
Hence
Bde 1 Bd& .
T "2\ 0t

and, substituting into Eq. (1l.13.1) and retaining only terms of first

degree in ¢ and é, one obtains

in agreement with Eq. (1). Eq. (2) is the same as Eq. (1.8.4).

Eq. (3) follows immediately from Eq. (1), since p and € are
equal to each other to the order of approximation under consideration,
as is apparent from Eqs. (1.8.3) and (1.8.5). Finally, Eq. (4) re-
sults from substituting M as given in Eq. (1.17.3) or (1.17.5) into

Eq. (1.17.1) and then dropping all nonlinear terms.
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Example: 1In Fig. 1.18.1, B designates a rigid body that is
attached by means of elastic supports to a space vehicle A which is
N
moving in such a way that the angular velocity QA of A in a new-

tonian reference frame N is given by

N A
W= 03y 0y, + 033, (2)

where O Q,, 0y are constants and 215 3,5 & form a dextral set of

1’ 3 3

orthogonal unit vectors fixed in A. Point B* is the mass center of

B, and hi’ 92, hﬁ are unit vectors parallel to principal axes of iner-

tia of B for B#*, the associated moments of inertia having the values

Il’ 12’ and 13.
In preparation for the formulation of equations of motion of B,

the first time-derivative, in N, of the angular momentum H of B

relative to B* in N is to be determined, assuming that all rotational

motions of B in A are slow, small motions. The orientation of B in

A 1is to be described in terms of body-three-vector angles 91, 92, and

6

3» all of which vanish when a, = Ei (i=1,2,3).

The angular velocity NQF of B in N can be expressed as

NwB - NQA + AE? (b)
(1.16.1)

Referring to Eqs. (1.2.5) and (1.8.12), one can write
N A - a.6 +o

8 3y (@ - X8y T56,)b,
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Figure 1,18.1
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+ (oz2 - oz361 + a193)§_2

+ (a3 - ozle2 +Q 61)9_3

) (c)
and, from Eq. (4)
AB _ .
w = &b, + Bb, + b, (4)
Hence
NBo (0 = OyBy + 0y, + B)by + ... (e)
(b,c,d)
and
i (:> I - by + a392 +8)b) + ... (£)

To evaluate the first time-derivative of H

in N, it is convenient to
use the relationship
N
dH Bdg N B
4t .. . ac vt w x B (2)
(1.11.8)
with
Pag , L
& = Il(-a293 + Ohez + 91)21 + e (h)
(£)
and
NwaH = (I,-1,)(c, -0, 0,+0 6.+5,) (0t -0l 6.+, 6.+6,. )b, + . (1)
- = (e,f) 3 727°Y72 737171737 72773 1V 271 Y301 b
3
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where, however, all nonlinear terms are to be dropped prior to sub-

stituting from Eq. (i) into Eq. (g). Thus one finds that

Nig

ac - {1191 (I - Ty D006, - (I) + I, - 15)a,6,

2 2
+ (I3 - Iy [0‘20‘3 * (O‘z O‘3)91 000, 0‘10‘393]§ byt e
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1.19 Instantaneous axis

At an instant at which the angular velocity ®w of a rigid body
B in a reference frame A (see Sec. 1l.11) is equal to zero, the
velocities of all points of B in A are equal to each other. When-
ever w is not equal to zero, there exist infinitely many points of
B whose velocity in A 1is parallel to w or equal to zero., These
poinfs all have the same velocity v* in A and they form a straight

line parallel to w and called the instantaneous axis of B in A.

The magnitude of y* is smaller than the magnitude of the velocity in
A of any point of B not lying on the instantaneous axis.

1£ 29 is the velocity in A of an arbitrarily selected base-
point Q of B, and P* is a point of the instantaneous axis, then

the position vector r* of P* relative to Q can be expressed as

Q

U Xy
.E* = --——2——— + “*.“.). (1)

e

where p* depends on the choice of P¥*; and v* is given by

t

Q

vk = —5— (2)

e
<

Derivation: In Fig., 1,19.1, both P and Q are arbitrarily
selected points of B, p and g are their respective position
vectors relative to a point O that is fixed in A, and r 1is the

position vector of P relative to Q. Hence

p=gq+r (a)

-162-



1.19

Figure 1.19.1
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and

A A A A

dp dg dr dgq
a4t . ae T i = et exr
dt (a) dt dt (1.11.9) dt

or, since the velocities XP and _\_{Q of P and Q in A are

equal to Ad_p_/dt and Adg_/dt,
Yy =y twuxk (b)
If w# 0, the vector r can always be expressed as the sum of

a vector, say 8, that is perpendicular to w, and the vector nuw,

where W 1is a certain scalar; that is

=5 +pw (e)

with

P
Consequently, v can be expressed as

v = zQ +wxs (e)
(b,c)
and
.‘EXY.P = .‘*_JXZQ'*'Q’ §_‘*_"'.‘*.12.S_
(e)
= wx XQ - ws (£)
{d)
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If P is now taken to be a point P¥* whose velocity v* in A

is parallel to w, and the associated values of r, s, and p are

called r*, s*, and p¥*, then

0 = wx zQ - 925*
(£)
W x y.Q
_* = s* + “*2 = 2 4 H*Q
(c) (8) w

y¥E o= vt w8k
(e)
qQ &Xx (w sz)
=z + 2
w
QZ.Y.Q"' .%’XQQ'QZ.Y.Q w 'ZQ
= 2 = 2 2
w W

in agreement with Eq. (2).

Example: In Fig. 1.19.2, B represents a slowly spinning

cylindrical satellite whose mass center B¥* moves on a circular

orbit of radius R fixed in a reference frame A. Throughout this

motion the symmetry axis of B 1is constrained to remain tangent

to the circle while B rotates about this axis at a constant rate

such that a plane fixed in B and passing through the axis becomes

-165~
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instantaneous
axis

Figure 1,19.2
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parallel to the orbit plane twice during each orbital revolution of
B*, The instantaneous axis of B in A is to be located for a typical
instant during the motion.

Letting A% be the center to the circle on which B* moves, and
designating as C a reference in which the normal to the circle at A%
and the line joining A* to B* are both fixed, one can express the
angular velocity of B in A as

AC CB
[0 = Wt ow (a)
(1.12,1)
Furthermore, if ( denotes the rate at which the line joining A* to
B* rotates in A, then
AC
w

= ac, (b)
(1.11.5)

and

c,? @

= QE—]_
(1.11.5)

where & and ¢, are unit vectors directed as in Fig. 1.19.2.

Hence

w = e, +c,) (d)
(a-c) 1 2

B%
The velocity v of B*¥ in A is given by
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v = Rle (e)

Consequently, if P* 1is a point on the instantaneous axis of B in

A, then the position vector r* of P* relative to B* is given by

gy + gy) X (ROg)
¥ (:) ) + uka(e + ¢,
20

Hence the instantaneous axis of B in A passes through the midpoint
of the line joining A* to B¥%*, is perpendicular to €3» and makes

a forty-five degree angle with each of ¢, and Cys as indicated in

1
Fig. 1.19.2.

-168-



1,20

1.20 Angular acceleration

The angular acceleration ¢ of a rigid body B 1in a reference
frame A is defined as the first time-derivative in A of the angular

velocity w of B in A (see Sec. 1l.1l):

A

p

04
- dt (1)
Frequently it is convenient to resolve both w and Q& into
components parallel to unit vectors fixed in a reference frame C,

that is, to express w and O as

e c c
W= Wyt owey Fowgeg (2)
and
c C c
Q= 0yey t Ohey t 048, 3)

where €10 &0 &5 is a dextral set of orthogonal unit vectors. When

this is done,

+oxw.g (=123 (4)

where § 1is the angular velocity of C in A. 1In other words,

depending on the motion of C in A, chi may, or may not, be equal
C.

to W, »
i

Derivations: Using Eq. (1.11.8) one can express O as
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c
dw
X = —+ Oxuw
dt =7
(1)
c. C. c.
= +
(2) 1&4 ) + WaCq Taxw

Consequently, when ¢ 1is expressed as in Eq. (3), then

C’ C Co C- C.
87 + 0532 + ch3 = wigi + w,C ‘+ w

289 C3 T 2 xuw

3

and dot-multiplication with < (i =1,2,3) gives
Co, =Cg +axw: g (1=1,2,3)

Example: Fig. 1.20.1 depicts the system previously considered
in the Example in Sec. 1.12. In addition to the unit vectors used

previously, orthogonal unit vectors and c

3

a reference frame C, 1in which these are fixed, is indicated. Con-

€y &y are shown, and

sidering only motions such that é and V, as well as g, remain

A B C .
constant, the quantities Qs ai and ai (i =1,2,3) are to be

determined, these being defined as

b>
>
es
>
O
np>
IR

- c; (i =1,2,3)

where @ 1is the angular acceleration of B in A,

The angular velocity w of B in A can be expressed as
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Figure 1.20,1
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_cg=(‘]fc9+53)11+"1’89¢¢§2+‘.1'893¢§.3 (b)

or as
w=(¥+ 5Oy - #30cyb,+ ps6syb, (c)

or as
w= ({lf+bce)§_:1 - ¢ 86 < (d)

Using Eq. (4), with C replaced by A, and hence §£ = 0, one

obtains by reference to Eq. {b)

A, _d . N o

o =z (heo+ g) =0 (e)
Aoz2=a§t—(ﬁ/se+C¢)=-{lffzsse s¢ (£)
Aoc3=gdt—({lf 50 sg) = Vp s cg (8)

Similarly, with C replaced by B in Eq. (4), so that { = w,

Eq. (c) permits one to write

a1=E(;lf+;dce)=0 (h)
Baz = aét- (-4 s6 c¥) = ;'m.lf se sV (1)
B _ _(-i._ (- - P .
oy = 37 (2 86 c¥y) = gy se cy ()
Finally, with
AC .
= w =g(co g - 80 gy (k)
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so that

8 x w = ;25{11 s6 23 )
(k,J)

it follows from Eq. (4) together with Eqs. (d) and (£) that

C _-d_ . . .e . _
) =g (V+ gco) +ghsbeg ¢y =0
¢, -4 . 6) + ¥ 80 . =0
Oy 3t (728 pY 80 g9 * €y =
and
c .. 0
Oy = oY s

Thus, with the exception of C& > every one of the quantities defined
in Eqs. (a) is equal to the time derivative of the corresponding angular

velocity measure number.
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